1
|
Whittington RJ, Grant TR, McKercher J, Suann M, Hart K, Handasyde KA, Macgregor J, Westman ME, Connolly JH. Leptospirosis in the Platypus ( Ornithorhynchus anatinus) in Australia: Who Is Infecting Whom? Animals (Basel) 2024; 14:2834. [PMID: 39409783 PMCID: PMC11476178 DOI: 10.3390/ani14192834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The platypus (Ornithorhynchus anatinus) is an amphibious, egg-laying mammal of high conservation value that is found only in Australia. The zoonotic bacterium Leptospira interrogans serovar Hardjo was discovered in platypuses in prior studies, but little is known about its epidemiology. Samples in the Platypus Serum Bank were tested in 2023 and the results were combined with historical records. Antibodies against L. interrogans serovar Hardjo were found in 50% of 464 serum samples from 411 platypuses collected from 14 river basins in southeastern Australia between 1981 and 2012; prevalence remained high over three decades in the Shoalhaven River population. Seroprevalence increased with age, suggesting environmental exposure. Individual platypuses had persistent titres, some for six years. Seropositive females lactated, juveniles were recruited into the population, and there were no reports of clinical leptospirosis. Three necropsied platypuses were seropositive and had mild nephritis with leptospires in the renal tubules. The high seroprevalence, persistent titres, lack of disease, mild renal lesions, and renal colonisation suggest the platypus may be a maintenance host. Sympatric cattle had L. interrogans serovar Hardjo titres, but the spatial association with seropositive platypuses was statistically weak. Other mammalian wildlife species and sheep also have L. interrogans serovar Hardjo titres; therefore, a complex ecological network must be considered. A landscape-wide study is recommended to properly assess transmission pathways and confirm who is infecting whom.
Collapse
Affiliation(s)
- Richard J. Whittington
- School of Veterinary Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia;
| | - Thomas R. Grant
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jarrad McKercher
- Centre for People, Place and Planet, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia;
| | - Monica Suann
- Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia;
| | - Keith Hart
- Pastures Protection Board Braidwood, Braidwood, NSW 2622, Australia
| | | | - James Macgregor
- UVC Wild, Ulverstone Veterinary Clinic, Ulverstone, TAS 7315, Australia
- Conservation Medicine Program, School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark E. Westman
- School of Veterinary Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia;
- Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia;
| | - Joanne H. Connolly
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia;
| |
Collapse
|
2
|
Whinfield J, Warren K, Vogelnest L, Vaughan-Higgins R. Applying a modified streamlined disease risk analysis framework to a platypus conservation translocation, with special consideration for the conservation of ecto- and endoparasites. Int J Parasitol Parasites Wildl 2024; 24:100948. [PMID: 38966858 PMCID: PMC11222941 DOI: 10.1016/j.ijppaw.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Platypuses are the world's most evolutionarily distinct mammal and have several host-specific ecto- and endoparasites. With platypus populations declining, consideration should also be given to preserving these high conservation priority parasites alongside their charismatic host. A disease risk analysis (DRA) was performed for a platypus conservation translocation, using a modified streamlined methodology that incorporated a parasite conservation framework. DRA frameworks rarely consider parasite conservation. Rather, parasites are typically considered myopically in terms of the potential harm they may cause their host. To address this, a previously proposed parasite conservation framework was incorporated into an existing streamlined DRA methodology. Incorporation of the two frameworks was achieved readily, although there is opportunity for further refinement of this process. This DRA is significant as it is the first performed for any monotreme species, and implements the emerging approach of balancing the health and disease risk of the host with parasite conservation.
Collapse
Affiliation(s)
- Jessica Whinfield
- The Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Kristin Warren
- The Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | | |
Collapse
|
3
|
Mijangos JL, Bino G, Hawke T, Kolomyjec SH, Kingsford RT, Sidhu H, Grant T, Day J, Dias KN, Gongora J, Sherwin WB. Fragmentation by major dams and implications for the future viability of platypus populations. Commun Biol 2022; 5:1127. [PMID: 36329312 PMCID: PMC9633709 DOI: 10.1038/s42003-022-04038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily unique platypus (Ornithorhynchus anatinus) has experienced major declines and extinctions from a range of historical and recent interacting human-mediated threats. Although spending most of their time in the water, platypuses can move over land. Nevertheless, uncertainties remain whether dams are barriers to movement, thus limiting gene flow and dispersal, essential to evolution and ecology. Here we examined disruption of gene flow between platypus groups below and above five major dams, matched to four adjacent rivers without major dams. Genetic differentiation (FST) across dams was 4- to 20-fold higher than along similar stretches of adjacent undammed rivers; FST across dams was similar to differentiation between adjacent river systems. This indicates that major dams represent major barriers for platypus movements. Furthermore, FST between groups was correlated with the year in which the dam was built, increasing by 0.011 every generation, reflecting the effects of these barriers on platypus genetics. This study provides evidence of gene flow restriction, which jeopardises the long-term viability of platypus populations when groups are fragmented by major dams. Mitigation strategies, such as building of by-pass structures and translocation between upstream and downstream of the dam, should be considered in conservation and management planning.
Collapse
Affiliation(s)
- Jose L. Mijangos
- grid.1005.40000 0004 4902 0432School of Science, UNSW, Canberra, Australia ,grid.1039.b0000 0004 0385 7472Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Gilad Bino
- grid.1005.40000 0004 4902 0432Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Tahneal Hawke
- grid.1005.40000 0004 4902 0432Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Stephen H. Kolomyjec
- grid.258898.60000 0004 0462 9201College of Science and the Environment, Lake Superior State University, Sault Sainte Marie, USA
| | - Richard T. Kingsford
- grid.1005.40000 0004 4902 0432Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Harvinder Sidhu
- grid.1005.40000 0004 4902 0432School of Science, UNSW, Canberra, Australia
| | - Tom Grant
- grid.1005.40000 0004 4902 0432Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia
| | - Jenna Day
- grid.1013.30000 0004 1936 834XSydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Kimberly N. Dias
- grid.1013.30000 0004 1936 834XSydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Jaime Gongora
- grid.1013.30000 0004 1936 834XSydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - William B. Sherwin
- grid.1005.40000 0004 4902 0432Evolution & Ecology Research Centre, UNSW, Sydney, Australia
| |
Collapse
|
4
|
Using DNA metabarcoding as a novel approach for analysis of platypus diet. Sci Rep 2022; 12:2247. [PMID: 35145160 PMCID: PMC8831530 DOI: 10.1038/s41598-022-06023-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Platypuses (Ornithorhynchus anatinus) forage for macroinvertebrate prey exclusively in freshwater habitats. Because food material in their faeces is well digested and mostly unidentifiable, previous dietary studies have relied on cheek pouch assessments and stable isotope analysis. Given DNA metabarcoding can identify species composition from only fragments of genetic material, we investigated its effectiveness in analysing the diet of platypuses, and to assess variation across seasons and sexes. Of the 18 orders and 60 families identified, Ephemeroptera and Diptera were the most prevalent orders, detected in 100% of samples, followed by Trichoptera, Pulmonata, and Odonata (86.21% of samples). Caenidae and Chironomidae were the most common families. Diptera had a high average DNA read, suggesting it is an important dietary component that may have been underestimated in previous studies. We found no variation in diet between sexes and only minimal changes between seasons. DNA metabarcoding proved to be a highly useful tool for assessing platypus diet, improving prey identification compared to cheek pouch analysis, which can underestimate soft-bodied organisms, and stable isotope analysis which cannot distinguish all taxa isotopically. This will be a useful tool for investigating how platypus prey diversity is impacted by habitat degradation as a result of anthropogenic stressors.
Collapse
|
5
|
Stewart J, Bino G, Hawke T, Kingsford RT. Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses. Sci Rep 2021; 11:15932. [PMID: 34354187 PMCID: PMC8342447 DOI: 10.1038/s41598-021-95544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Platypuses (Ornithorhynchus anatinus) inhabit the permanent rivers and creeks of eastern Australia, from north Queensland to Tasmania, but are experiencing multiple and synergistic anthropogenic threats. Baseline information of health is vital for effective monitoring of populations but is currently sparse for mainland platypuses. Focusing on seven hematology and serum chemistry metrics as indicators of health and nutrition (packed cell volume (PCV), total protein (TP), albumin, globulin, urea, creatinine, and triglycerides), we investigated their variation across the species' range and across seasons. We analyzed 249 unique samples collected from platypuses in three river catchments in New South Wales and Victoria. Health metrics significantly varied across the populations' range, with platypuses from the most northerly catchment, having lower PCV, and concentrations of albumin and triglycerides and higher levels of globulin, potentially reflecting geographic variation or thermal stress. The Snowy River showed significant seasonal patterns which varied between the sexes and coincided with differential reproductive stressors. Male creatinine and triglyceride levels were significantly lower than females, suggesting that reproduction is energetically more taxing on males. Age specific differences were also found, with juvenile PCV and TP levels significantly lower than adults. Additionally, the commonly used body condition index (tail volume index) was only negatively correlated with urea, and triglyceride levels. A meta-analysis of available literature revealed a significant latitudinal relationship with PCV, TP, albumin, and triglycerides but this was confounded by variation in sampling times and restraint methods. We expand understanding of mainland platypuses, providing reference intervals for PCV and six blood chemistry, while highlighting the importance of considering seasonal variation, to guide future assessments of individual and population condition.
Collapse
Affiliation(s)
- Jana Stewart
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia.
| | - Gilad Bino
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Tahneal Hawke
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Richard T Kingsford
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|