1
|
Mrabet S, Falfoul Y, Bouassida M, Souissi A, El Matri K, Gharbi A, Chebil A, Kacem I, El Matri L, Gouider R. Retinal changes in multiple sclerosis: An optical coherence tomography and angiography study. Rev Neurol (Paris) 2024; 180:622-631. [PMID: 38458836 DOI: 10.1016/j.neurol.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 03/10/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system with neuroaxonal damage. It is the principal driver of non-traumatic disability in young adults. Visual symptoms are common and optic neuritis (ON) may be the revealing feature in up to 30% of cases. Structural optical coherence tomography (OCT) represents a biomarker of central nervous system neurodegeneration in MS. OCT-angiography (OCT-A) is a noninvasive tool allowing the study of retinal vasculature and the detection of microvascular damage in neuro-retinal diseases. In this study, we aimed to assess structural and microvascular retinal changes in patients with MS with and without ON and to correlate the findings with visual function and MS disability. METHODS We conducted a cross-sectional study including patients diagnosed with MS according to the 2017 McDonald criteria. All patients underwent complete neurological examination with evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Severity Score (MSSS) and an ophthalmological examination including OCT and OCT-A. Patients were compared with age- and sex-matched healthy subjects. The primary endpoints were assessment of retinal nerve fiber layer (RNFL) thickness, ganglion cell layer (GCL+), and ganglion cell complex (GCL++) thicknesses on OCT. Vascular densities in the superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) were assessed on OCT-A, as well as central avascular zone (CAZ) parameters, lacunarity and fractal dimension. RESULTS A total of 160 MS eyes with and without a previous history of ON and 64 age- and gender-matched healthy eyes were analyzed. Among 160 eyes with MS, 69 had a history of ON. We observed a decrease in RNFL and GCL++ thickness in all 12 quadrants in MS patients when compared to healthy controls. Multivariate analysis by linear regression noted a significant correlation for temporal GCL++ and inferonasal RNFL thickness that were decreased in the MS group. A greater decrease in retinal layers thickness was identified in MS patients with a history of ON. On OCT-A, vascular density in (SCP) was significantly reduced in the MS group (P<0.002). A significant correlation between RNFL thickness and retinal vascular density was found but only in less than half of the hourly quadrants. A significant correlation was noted between visual acuity and CC density (P<0.0001). We also noted an inverse correlation between EDSS scores and CC density (P=0.02 and r=-0.275) and between MSSS and RNFL/GCL++ thicknesses. CONCLUSIONS RNFL and GCL++ layers were thinner in MS patients with a history of ON and were reversely correlated with disease severity. Moreover, retinal vascular changes were observed in MS even in eyes without ON, and CC was reversely correlated with visual function and current disability. Thus, structural OCT coupled with OCT-A could represent a noninvasive and dynamic biomarker of MS severity and progression.
Collapse
Affiliation(s)
- S Mrabet
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - Y Falfoul
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - M Bouassida
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia
| | - A Souissi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - K El Matri
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - A Gharbi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - A Chebil
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - I Kacem
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - L El Matri
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - R Gouider
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia.
| |
Collapse
|
2
|
Chavarria V, Espinosa-Ramírez G, Sotelo J, Flores-Rivera J, Anguiano O, Hernández AC, Guzmán-Ríos ED, Salazar A, Ordoñez G, Pineda B. Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis in Mexican Patients: A Prospective Study. Arch Med Res 2023:102843. [PMID: 37429750 DOI: 10.1016/j.arcmed.2023.102843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Clinically Isolated Syndrome (CIS) is the first clinical episode suggestive of Clinical Definite Multiple Sclerosis (CDMS). There are no reports on possible predictors of conversion to CDMS in Mexican mestizo patients. AIM OF THE STUDY To investigate immunological markers, clinical and paraclinical findings, and the presence of herpesvirus DNA to predict the transition from CIS to CDMS in Mexican patients. METHODS A single-center prospective cohort study was conducted with newly diagnosed patients with CIS in Mexico between 2006 and 2010. Clinical information, immunophenotype, serum cytokines, anti-myelin protein immunoglobulins, and herpes viral DNA were determined at the time of diagnosis. RESULTS 273 patients diagnosed with CIS met the enrolment criteria; after 10 years of follow-up, 46% met the 2010 McDonald criteria for CDMS. Baseline parameters associated with conversion to CDMS were motor symptoms, multifocal syndromes, and alterations of somatosensory evoked potentials. The presence of at least one lesion on magnetic resonance imaging was the main factor associated with an increased risk of conversion to CDMS (RR 15.52, 95% CI 3.96-60.79, p = 0.000). Patients who converted to CDMS showed a significantly lower percentage of circulating regulatory T cells, cytotoxic T cells, and B cells, and the conversion to CDMS was associated with the presence of varicella-zoster virus and herpes simplex virus 1 DNA in cerebrospinal fluid and blood. CONCLUSION There is scarce evidence in Mexico regarding the demographic and clinical aspects of CIS and CDMS. This study shows several predictors of conversion to CDMS to be considered in Mexican patients with CIS.
Collapse
Affiliation(s)
- Víctor Chavarria
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Julio Sotelo
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - José Flores-Rivera
- Demyelinating Diseases Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Omar Anguiano
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Ana Campos Hernández
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Aleli Salazar
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Graciela Ordoñez
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Benjamin Pineda
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.
| |
Collapse
|
3
|
Bower A, Makhani N. Radiologically Isolated Syndrome and the Multiple Sclerosis Prodrome in Pediatrics: Early Features of the Spectrum of Demyelination. Semin Pediatr Neurol 2023; 46:101053. [PMID: 37451751 DOI: 10.1016/j.spen.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/18/2023]
Abstract
Radiologically isolated syndrome refers to the clinical scenario in which individuals have imaging concerning for multiple sclerosis and would otherwise satisfy radiographic dissemination in space criteria, but do not have any attributable signs or symptoms. Radiologically isolated syndrome has been increasingly recognized in the pediatric population and it is understood certain individuals will transition to a formal diagnosis of multiple sclerosis over time. This review aims to outline the available data within this unique population including the diagnostic criteria, epidemiology, risk factors associated with transitioning to multiple sclerosis, and the current therapeutic landscape. Radiologically isolated syndrome will also be positioned within a broader spectrum of demyelinating disease as recent data has pointed towards a likely prodromal phase that precedes a first clinical event and diagnosis of multiple sclerosis. Characterizing the radiographic features, clinical symptoms, and biomarkers that constitute this prodromal phase of multiple sclerosis would help identify patients who may most benefit from early intervention in the future.
Collapse
Affiliation(s)
- Aaron Bower
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Naila Makhani
- Department of Neurology, Yale School of Medicine, New Haven, CT; Department of Pediatrics, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
4
|
Tremlett H, Munger KL, Makhani N. The Multiple Sclerosis Prodrome: Evidence to Action. Front Neurol 2022; 12:761408. [PMID: 35173664 PMCID: PMC8841819 DOI: 10.3389/fneur.2021.761408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023] Open
Abstract
A growing body of work points toward the existence of a clinically symptomatic prodromal phase in multiple sclerosis (MS) that might span 5–10 years or more. A prodrome is an early set of signs or symptoms predating the onset of classical disease, which in turn predates a definitive diagnosis. Evidence for a prodromal phase in MS could have major implications for prevention, earlier recognition and treatment, as well as an improved disease course or prognosis. This Perspective provides a succinct overview of the recent advances in our understanding of the MS prodrome and current key challenges. Many of the MS prodromal features characterized thus far are non-specific and are common in the general population; no single feature alone is sufficient to identify an individual with prodromal MS. Biomarkers may increase specificity and accuracy for detecting individuals in the MS prodromal phase, but are yet to be discovered or formally validated. Progress made in the elucidation of prodromal phases in other neurological and immune-mediated diseases suggests that these barriers can be overcome. Therefore, while knowledge of a prodromal phase in MS remains nascent, how best to move from the rapidly growing evidence to research-related action is critical. Immediate implications include refining the concept of the MS continuum to include a prodromal phase. This will help inform the true “at risk” period when considering exposures that might cause MS. Major long-term implications include the earlier recognition of MS, improved prognosis, through earlier disease management, and the future possibility of MS disease prevention.
Collapse
Affiliation(s)
- Helen Tremlett
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Helen Tremlett
| | | | - Naila Makhani
- Departments of Pediatrics and Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
López-Dorado A, Ortiz M, Satue M, Rodrigo MJ, Barea R, Sánchez-Morla EM, Cavaliere C, Rodríguez-Ascariz JM, Orduna-Hospital E, Boquete L, Garcia-Martin E. Early Diagnosis of Multiple Sclerosis Using Swept-Source Optical Coherence Tomography and Convolutional Neural Networks Trained with Data Augmentation. SENSORS (BASEL, SWITZERLAND) 2021; 22:167. [PMID: 35009710 PMCID: PMC8747672 DOI: 10.3390/s22010167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The aim of this paper is to implement a system to facilitate the diagnosis of multiple sclerosis (MS) in its initial stages. It does so using a convolutional neural network (CNN) to classify images captured with swept-source optical coherence tomography (SS-OCT). METHODS SS-OCT images from 48 control subjects and 48 recently diagnosed MS patients have been used. These images show the thicknesses (45 × 60 points) of the following structures: complete retina, retinal nerve fiber layer, two ganglion cell layers (GCL+, GCL++) and choroid. The Cohen distance is used to identify the structures and the regions within them with greatest discriminant capacity. The original database of OCT images is augmented by a deep convolutional generative adversarial network to expand the CNN's training set. RESULTS The retinal structures with greatest discriminant capacity are the GCL++ (44.99% of image points), complete retina (26.71%) and GCL+ (22.93%). Thresholding these images and using them as inputs to a CNN comprising two convolution modules and one classification module obtains sensitivity = specificity = 1.0. CONCLUSIONS Feature pre-selection and the use of a convolutional neural network may be a promising, nonharmful, low-cost, easy-to-perform and effective means of assisting the early diagnosis of MS based on SS-OCT thickness data.
Collapse
Affiliation(s)
- Almudena López-Dorado
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (A.L.-D.); (R.B.); (C.C.); (J.M.R.-A.)
| | - Miguel Ortiz
- Computer Vision, Imaging and Machine Intelligence Research Group, Interdisciplinary Center for Security, Reliability and Trust (SnT), University of Luxembourg, 4365 Luxembourg, Luxembourg;
| | - María Satue
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Department of Ophthalmology, Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, University of Zaragoza, 50018 Zaragoza, Spain; (M.S.); (M.J.R.); (E.O.-H.)
| | - María J. Rodrigo
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Department of Ophthalmology, Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, University of Zaragoza, 50018 Zaragoza, Spain; (M.S.); (M.J.R.); (E.O.-H.)
| | - Rafael Barea
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (A.L.-D.); (R.B.); (C.C.); (J.M.R.-A.)
| | - Eva M. Sánchez-Morla
- Department of Psychiatry, Hospital 12 de Octubre Research Institute (i+12), 28041 Madrid, Spain;
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Centre in Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Carlo Cavaliere
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (A.L.-D.); (R.B.); (C.C.); (J.M.R.-A.)
| | - José M. Rodríguez-Ascariz
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (A.L.-D.); (R.B.); (C.C.); (J.M.R.-A.)
| | - Elvira Orduna-Hospital
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Department of Ophthalmology, Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, University of Zaragoza, 50018 Zaragoza, Spain; (M.S.); (M.J.R.); (E.O.-H.)
| | - Luciano Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcalá, 28801 Alcalá de Henares, Spain; (A.L.-D.); (R.B.); (C.C.); (J.M.R.-A.)
| | - Elena Garcia-Martin
- Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), Department of Ophthalmology, Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, University of Zaragoza, 50018 Zaragoza, Spain; (M.S.); (M.J.R.); (E.O.-H.)
| |
Collapse
|