1
|
Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision for Precision Pollination. Int J Comput Vis 2022. [DOI: 10.1007/s11263-022-01715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Best practices for instrumenting honey bees. Sci Rep 2022; 12:12796. [PMID: 35896574 PMCID: PMC9329375 DOI: 10.1038/s41598-022-16168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022] Open
Abstract
Honey bees are vital pollinators and can be used to monitor the landscape. Consequently, interest in mounting technologies onto bees to track foraging behaviors is increasing. The barrier to entry is steep, in part because the methodology for fastening tags to bees, and the success rates, are often missing from publications. We tested six factors suspected to influence the presence and tag retention rates of nurse honey bees after their introduction to hives, and followed bees until foraging age. We also compared reintroducing foragers to their maternal colony using the best method for nurse bees to releasing them in front of their maternal hive and allowing them to fly back unaided. Nurses were most likely to be present in the hive with their tag still attached when introduced using an introduction cage at night. Glue type was important, but may further be influenced by tag material. Foragers were most likely to be present with a tag attached if released in front of their colony. Preparation and introduction techniques influence the likelihood of tagged honey bee survival and of the tags remaining attached, which should be considered when executing honey bee tagging and tracking experiments.
Collapse
|
3
|
De-la-Cruz IM, Batsleer F, Bonte D, Diller C, Hytönen T, Muola A, Osorio S, Posé D, Vandegehuchte ML, Stenberg JA. Evolutionary Ecology of Plant-Arthropod Interactions in Light of the "Omics" Sciences: A Broad Guide. FRONTIERS IN PLANT SCIENCE 2022; 13:808427. [PMID: 35548276 PMCID: PMC9084618 DOI: 10.3389/fpls.2022.808427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities' genetic background and evolution, such knowledge can also help address many current global environmental challenges.
Collapse
Affiliation(s)
- Ivan M. De-la-Cruz
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Femke Batsleer
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Carolina Diller
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- NIAB EMR, West Malling, United Kingdom
| | - Anne Muola
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Biodiversity Unit, University of Turku, Finland
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - David Posé
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan A. Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
4
|
Automated entrance monitoring of managed bumble bees. ARTIFICIAL LIFE AND ROBOTICS 2022. [DOI: 10.1007/s10015-022-00748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Smith MT, Livingstone M, Comont R. A method for low‐cost, low‐impact insect tracking using retroreflective tags. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|