1
|
Curtis DP, Baumann AN, Salmen N, Jeyakumar A. Investigating Additional Cochlear Parameters: A follow-up systematic review and meta-analysis. J Otol 2024; 19:178-183. [PMID: 39735240 PMCID: PMC11681789 DOI: 10.1016/j.joto.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 12/31/2024] Open
Abstract
Objectives The movement towards personalization of cochlear implantation has continued to generate interest about variabilities in cochlear size. In a recent meta-analysis, Atalay et al. (2022) examined organ of corti length, cochlear lateral wall, and "A" value and found that most covariates, other than congenital sensorineural hearing loss, did not impact cochlear size via these measurements. However, no meta-analysis exists on how patient-specific variables could impact other cochlear size measurements, such as cochlear height (CH), and "B" value (defined as the distance between opposite lateral walls and perpendicular to "A" value). The purpose of this systematic review and meta-analysis is to examine how patient-specific variables impact additional cochlear size measurements to assist clinical decision-making. Databases reviewed A systematic review for cochlear size measurements using PRISMA methodology was performed using PubMed, CINAHL, and MEDLINE from database inception to October 1st, 2022. Methods Search terms used included English, cochlea, size, histology, anatomy, and human. Inclusion criteria were measurements for human cochlea, full-text articles, and articles in English. Primary measurements were "B" value and CH, as these measurements differ from the recent meta-analysis on this topic. Cochlear duct length (CDL) was also included. A random-effects continuous model for meta-analysis was performed. Measurements were stratified by gender (male/female) and disease type (sensorineural hearing loss (SNHL)/conductive hearing loss (CHL)). Results A total of 7 articles met final inclusion criteria from a total of 674 articles received on initial search, resulting in 2263 total human cochleae. There was a statistical difference between male CDL (n = 681 cochlea) compared to female CDL (n = 657) from four articles (p < 0.001; Cohen's d effect size (ES):0.421; 95% confidence intervals (CI): 0.171, 0.671). The frequency weighted mean for male CDL was 33.5 mm ± 1.8 mm and the frequency weighted mean for female CDL was 32.4 mm ± 1.5 mm with an unstandardized mean difference of 0.854 mm. There was no statistical difference between male "B" value (n = 329) and female "B" value (n = 349) for cochlea from two studies (p = 0.184; Cohen's d ES: 0.410; 95% CI: 0.194, 1.014). The frequency weighted mean for male "B" value was 6.5 mm ± 0.1 mm and the frequency weighted mean for female "B" value was 6.4 mm ± 0.1 mm with an unstandardized mean difference of 0.126 mm. There was no statistical difference between CH for SNHL (n = 282) and CHL (n = 275) from two studies (p = 0.486; ES: 0.085; 95% CI: 0.323, 0.153, F ig. 3). The frequency weighted mean for SNHL CH was 4.6 mm ± 0.8 mm and the frequency weighted mean for CHL CH was 4.3 mm ± 0.8 mm with an unstandardized mean difference of 0.032 mm. Conclusion Male CDL is statistically larger than female CDL. There is no statistically significant association between gender or hearing loss type and "B" value or CH. The effect size for all comparisons is small, indicating little practical significance between any existing differences. The results of this study provide two additional cochlear metrics and indicate similar findings to the study by Atalay and colleagues as patient-specific characteristics appear to have no statistically significantly impact on cochlear size.
Collapse
Affiliation(s)
| | | | | | - Anita Jeyakumar
- Northeast Ohio Medical University, Rootstown, OH, USA
- Bon Secours Mercy Health, Youngstown, OH, USA
| |
Collapse
|
2
|
Geys M, Sijgers L, Dobrev I, Dalbert A, Röösli C, Pfiffner F, Huber A. ZH-ECochG Bode Plot: A Novel Approach to Visualize Electrocochleographic Data in Cochlear Implant Users. J Clin Med 2024; 13:3470. [PMID: 38929998 PMCID: PMC11205027 DOI: 10.3390/jcm13123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Various representations exist in the literature to visualize electrocochleography (ECochG) recordings along the basilar membrane (BM). This lack of generalization complicates comparisons within and between cochlear implant (CI) users, as well as between publications. This study synthesized the visual representations available in the literature via a systematic review and provides a novel approach to visualize ECochG data in CI users. Methods: A systematic review was conducted within PubMed and EMBASE to evaluate studies investigating ECochG and CI. Figures that visualized ECochG responses were selected and analyzed. A novel visualization of individual ECochG data, the ZH-ECochG Bode plot (ZH = Zurich), was devised, and the recordings from three CI recipients were used to demonstrate and assess the new framework. Results: Within the database search, 74 articles with a total of 115 figures met the inclusion criteria. Analysis revealed various types of representations using different axes; their advantages were incorporated into the novel visualization framework. The ZH-ECochG Bode plot visualizes the amplitude and phase of the ECochG recordings along the different tonotopic regions and angular insertion depths of the recording sites. The graph includes the pre- and postoperative audiograms to enable a comparison of ECochG responses with the audiometric profile, and allows different measurements to be shown in the same graph. Conclusions: The ZH-ECochG Bode plot provides a generalized visual representation of ECochG data, using well-defined axes. This will facilitate the investigation of the complex ECochG potentials generated along the BM and allows for better comparisons of ECochG recordings within and among CI users and publications. The scripts used to construct the ZH-ECochG Bode plot are provided by the authors.
Collapse
Affiliation(s)
- Marlies Geys
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
3
|
Stritzel J, Ebrahimzadeh AH, Büchner A, Lanfermann H, Marschollek M, Wolff D. Landmark-based registration of a cochlear model to a human cochlea using conventional CT scans. Sci Rep 2024; 14:1115. [PMID: 38212412 PMCID: PMC10784596 DOI: 10.1038/s41598-023-50632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cochlear implants can provide an advanced treatment option to restore hearing. In standard pre-implant procedures, many factors are already considered, but it seems that not all underlying factors have been identified yet. One reason is the low quality of the conventional computed tomography images taken before implantation, making it difficult to assess these parameters. A novel method is presented that uses the Pietsch Model, a well-established model of the human cochlea, as well as landmark-based registration to address these challenges. Different landmark numbers and placements are investigated by visually comparing the mean error per landmark and the registrations' results. The landmarks on the first cochlear turn and the apex are difficult to discern on a low-resolution CT scan. It was possible to achieve a mean error markedly smaller than the image resolution while achieving a good visual fit on a cochlear segment and directly in the conventional computed tomography image. The employed cochlear model adjusts image resolution problems, while the effort of setting landmarks is markedly less than the segmentation of the whole cochlea. As a next step, the specific parameters of the patient could be extracted from the adapted model, which enables a more personalized implantation with a presumably better outcome.
Collapse
Affiliation(s)
- Jenny Stritzel
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany.
| | - Amir Hossein Ebrahimzadeh
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- German Hearing Center, Hannover Medical School, Hannover, Germany
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Michael Marschollek
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany
| | - Dominik Wolff
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Swords C, Geerardyn A, Zhu M, O'Malley JT, Wu P, Arenberg JG, Podury A, Brassett C, Bance M, Quesnel AM. Incomplete Partition Type II Cochlear Malformations: Delineating the Three-Dimensional Structure from Digitized Human Histopathological Specimens. Otol Neurotol 2023; 44:881-889. [PMID: 37621122 PMCID: PMC10803064 DOI: 10.1097/mao.0000000000003999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
HYPOTHESIS There are clinically relevant differences in scalae anatomy and spiral ganglion neuron (SGN) quantity between incomplete partition type II (IP-II) and normal cochleae. BACKGROUND IP-II is a commonly implanted cochlear malformation. Detailed knowledge of intracochlear three-dimensional (3D) morphology may assist with cochlear implant (CI) electrode selection/design and enable optimization of audiologic programming based on SGN maps. METHODS IP-II (n = 11) human temporal bone histological specimens were identified from the National Institute on Deafness and Other Communication Disorders National Temporal Bone Registry and digitized. The cochlear duct, scalae, and surgically relevant anatomy were reconstructed in 3D. A machine learning algorithm was applied to map the location and number of SGNs. RESULTS 3D scalae morphology of the basal turn was normal. Scala tympani (ST) remained isolated for 540 degrees before fusing with scala vestibuli. Mean ST volume reduced below 1 mm 2 after the first 340 degrees. Scala media was a distinct endolymphatic compartment throughout; mean ± standard deviation cochlear duct length was 28 ± 3 mm. SGNs were reduced compared with age-matched norms (mean, 48%; range, 5-90%). In some cases, SGNs failed to ascend Rosenthal's canal, remaining in an abnormal basalward modiolar location. Two forms of IP-II were seen: type A and type B. A majority (98-100%) of SGNs were located in the basal modiolus in type B IP-II, compared with 76 to 85% in type A. CONCLUSION Hallmark features of IP-II cochleae include the following: 1) fusion of the ST and scala vestibuli at a mean of 540 degrees, 2) highly variable and overall reduced SGN quantity compared with normative controls, and 3) abnormal SGN distribution with cell bodies failing to ascend Rosenthal's canal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cecilia Brassett
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
5
|
Curtis DP, Baumann AN, Jeyakumar A. Variation in cochlear size: A systematic review. Int J Pediatr Otorhinolaryngol 2023; 171:111659. [PMID: 37459768 DOI: 10.1016/j.ijporl.2023.111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Advancements in imaging and implantation technology have invited reexamination of the classic teaching that the human cochlea maintains uniform size across demographics. Yet, studies yield conflicting results and relatively few broad systematic reviews have examined cochlear size variation. PURPOSE The purpose of this study is to quantify cochlear variability across eight different measurement categories and suggest normative values and ranges for each with consideration of disease state and gender where possible. METHODS A systematic search was conducted up to October 1, 2022, using the search terms "Cochlea/anatomy and histology"[Mesh]) AND 'size'" with filters "Humans" and "English" across three databases (PubMed, CINAHL, Medline). Further inclusion criteria involved reporting of numerical measurements in any of the eight included categories. RESULTS Of the 625 articles manually reviewed for relevance by title and abstract, 91 were selected for full-text review and 33 met all eligibility criteria. 5,791 cochleae were included and weighted means and ranges were calculated: "A" value (defined as the distance from the round window, through the modiolus, to the oppsite lateral wall) = 9.23 mm (8.43-10.4 mm, n = 2559); cochlear duct length (CDL) = 33.04 mm (range 28.2-36.4 mm, n = 2252); cochlear height = 5.14 mm (2.8-6.9 mm, n = 2098); the basal turn lumen diameter = 2.09 mm (1.7-2.2 mm, n = 617); "B" value (defined as perpendicular to "A" value and in the same plane) = 6.52 mm (5.73-6.9 mm, n = 908); width of the basal turn = 6.4 mm (6.22-6.86 mm, n = 356); height of the basal turn = 1.96 mm (1.77-2.56 mm, n = 204); length of the basal turn 21.87 mm (21.03-22.5 mm, n = 384). CONCLUSION A notable size range exists across the eight different cochlear parameters considered and we provide normative values for each measurement. Females tend to have smaller CDL and "A" value than males and the sensorineural hearing loss patients had smaller CDL and "A" value but larger cochlear height than the general population.
Collapse
Affiliation(s)
| | | | - Anita Jeyakumar
- Department of Otolaryngology, Mercy Bon Secours, Youngstown, OH, 44512, USA
| |
Collapse
|
6
|
Hrncirik F, Roberts I, Sevgili I, Swords C, Bance M. Models of Cochlea Used in Cochlear Implant Research: A Review. Ann Biomed Eng 2023; 51:1390-1407. [PMID: 37087541 PMCID: PMC10264527 DOI: 10.1007/s10439-023-03192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/24/2023]
Abstract
As the first clinically translated machine-neural interface, cochlear implants (CI) have demonstrated much success in providing hearing to those with severe to profound hearing loss. Despite their clinical effectiveness, key drawbacks such as hearing damage, partly from insertion forces that arise during implantation, and current spread, which limits focussing ability, prevent wider CI eligibility. In this review, we provide an overview of the anatomical and physical properties of the cochlea as a resource to aid the development of accurate models to improve future CI treatments. We highlight the advancements in the development of various physical, animal, tissue engineering, and computational models of the cochlea and the need for such models, challenges in their use, and a perspective on their future directions.
Collapse
Affiliation(s)
- Filip Hrncirik
- Cambridge Hearing Group, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Iwan Roberts
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ilkem Sevgili
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Chloe Swords
- Cambridge Hearing Group, Cambridge, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
7
|
Interobserver variability of cochlear duct measurements in pediatric cochlear implant candidates. Eur Arch Otorhinolaryngol 2023; 280:1647-1651. [PMID: 36074160 PMCID: PMC9988785 DOI: 10.1007/s00405-022-07639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The objective of the study was to evaluate the proposed cochlear duct length estimation based on the cochlear 'A value'. Furthermore, we assessed the interobserver variability between radiology and otolaryngology attending physicians and otolaryngology trainees. METHODS Thirteen pediatric cochlear implant candidates were retrospectively analyzed by three otolaryngology physicians (attending physician, second year, and fourth year trainees) and a radiology attending. The cochlear duct length was calculated based on the formula of Grover et al. The differences in acquired measurements between observers were compared using the Wilcoxon matched signed-rank test. RESULTS The differences in measurements between the attending otolaryngologist and radiologist were not statistically different, while several significant differences were observed with regard to measurements of attending doctors compared to both residents. In particular, a significant difference between the second year otolaryngology resident and otolaryngology and radiology attending was observed for one side (right ear p = 0.034 and p = 0.012, respectively). Moreover, the fourth year resident calculated significantly different cochlear duct measurements when compared to the attending otolaryngologist (left ear p = 0.014) and radiologist (right ear p = 0.047). Interestingly, differently experienced otolaryngology residents provided significantly different measurements for both ears. CONCLUSIONS Based on these results, cochlear duct length measurement according to the proposed method may be a reliable and cost-effective method. Indeed, otolaryngology training may be sufficient to provide measurements comparable to radiologists. On the other hand, additional efforts should be invested during otolaryngology training in terms of the evaluation of radiological imaging which may increase the capabilities of otolaryngology residents in this regard.
Collapse
|
8
|
Hrncirik F, Roberts IV, Swords C, Christopher PJ, Chhabu A, Gee AH, Bance ML. Impact of Scala Tympani Geometry on Insertion Forces during Implantation. BIOSENSORS 2022; 12:999. [PMID: 36354508 PMCID: PMC9688204 DOI: 10.3390/bios12110999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 05/07/2023]
Abstract
(1) Background: During a cochlear implant insertion, the mechanical trauma can cause residual hearing loss in up to half of implantations. The forces on the cochlea during the insertion can lead to this mechanical trauma but can be highly variable between subjects which is thought to be due to differing anatomy, namely of the scala tympani. This study presents a systematic investigation of the influence of different geometrical parameters of the scala tympani on the cochlear implant insertion force. The influence of these parameters on the insertion forces were determined by testing the forces within 3D-printed, optically transparent models of the scala tympani with geometric alterations. (2) Methods: Three-dimensional segmentations of the cochlea were characterised using a custom MATLAB script which parametrised the scala tympani model, procedurally altered the key shape parameters (e.g., the volume, vertical trajectory, curvature, and cross-sectional area), and generated 3D printable models that were printed using a digital light processing 3D printer. The printed models were then attached to a custom insertion setup that measured the insertion forces on the cochlear implant and the scala tympani model during a controlled robotic insertion. (3) Results: It was determined that the insertion force is largely unaffected by the overall size, curvature, vertical trajectory, and cross-sectional area once the forces were normalised to an angular insertion depth. A Capstan-based model of the CI insertion forces was developed and matched well to the data acquired. (4) Conclusion: By using accurate 3D-printed models of the scala tympani with geometrical alterations, it was possible to demonstrate the insensitivity of the insertion forces to the size and shape of the scala tympani, after controlling for the angular insertion depth. This supports the Capstan model of the cochlear implant insertion force which predicts an exponential growth of the frictional force with an angular insertion depth. This concludes that the angular insertion depth, rather than the length of the CI inserted, should be the major consideration when evaluating the insertion force and associated mechanical trauma caused by cochlear implant insertion.
Collapse
Affiliation(s)
- Filip Hrncirik
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Iwan V. Roberts
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Chloe Swords
- Cambridge Hearing Group, Cambridge, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Akil Chhabu
- Clinical School, University of Cambridge, Cambridge CB2 0SP, UK
| | - Andrew H. Gee
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge CB2 3DY, UK
| | - Manohar L. Bance
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
9
|
Ding AS, Lu A, Li Z, Galaiya D, Ishii M, Siewerdsen JH, Taylor RH, Creighton FX. Statistical Shape Model of the Temporal Bone Using Segmentation Propagation. Otol Neurotol 2022; 43:e679-e687. [PMID: 35761465 PMCID: PMC10072910 DOI: 10.1097/mao.0000000000003554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Automated image registration techniques can successfully determine anatomical variation in human temporal bones with statistical shape modeling. BACKGROUND There is a lack of knowledge about inter-patient anatomical variation in the temporal bone. Statistical shape models (SSMs) provide a powerful method for quantifying variation of anatomical structures in medical images but are time-intensive to manually develop. This study presents SSMs of temporal bone anatomy using automated image-registration techniques. METHODS Fifty-three cone-beam temporal bone CTs were included for SSM generation. The malleus, incus, stapes, bony labyrinth, and facial nerve were automatically segmented using 3D Slicer and a template-based segmentation propagation technique. Segmentations were then used to construct SSMs using MATLAB. The first three principal components of each SSM were analyzed to describe shape variation. RESULTS Principal component analysis of middle and inner ear structures revealed novel modes of anatomical variation. The first three principal components for the malleus represented variability in manubrium length (mean: 4.47 mm; ±2-SDs: 4.03-5.03 mm) and rotation about its long axis (±2-SDs: -1.6° to 1.8° posteriorly). The facial nerve exhibits variability in first and second genu angles. The bony labyrinth varies in the angle between the posterior and superior canals (mean: 88.9°; ±2-SDs: 83.7°-95.7°) and cochlear orientation (±2-SDs: -4.0° to 3.0° anterolaterally). CONCLUSIONS SSMs of temporal bone anatomy can inform surgeons on clinically relevant inter-patient variability. Anatomical variation elucidated by these models can provide novel insight into function and pathophysiology. These models also allow further investigation of anatomical variation based on age, BMI, sex, and geographical location.
Collapse
Affiliation(s)
- Andy S. Ding
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Alexander Lu
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Zhaoshuo Li
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Deepa Galaiya
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masaru Ishii
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey H. Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Russell H. Taylor
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland
| | - Francis X. Creighton
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci 2022; 120:103720. [DOI: 10.1016/j.mcn.2022.103720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
|
11
|
Neves CA, Tran ED, Cooperman SP, Blevins NH. Fully Automated Measurement of Cochlear Duct Length From Clinical Temporal Bone Computed Tomography. Laryngoscope 2021; 132:449-458. [PMID: 34536238 DOI: 10.1002/lary.29869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS To present and validate a novel fully automated method to measure cochlear dimensions, including cochlear duct length (CDL). STUDY DESIGN Cross-sectional study. METHODS The computational method combined 1) a deep learning (DL) algorithm to segment the cochlea and otic capsule and 2) geometric analysis to measure anti-modiolar distances from the round window to the apex. The algorithm was trained using 165 manually segmented clinical computed tomography (CT). A Testing group of 159 CTs were then measured for cochlear diameter and width (A- and B-values) and CDL using the automated system and compared against manual measurements. The results were also compared with existing approaches and historical data. In addition, pre- and post-implantation scans from 27 cochlear implant recipients were studied to compare predicted versus actual array insertion depth. RESULTS Measurements were successfully obtained in 98.1% of scans. The mean CDL to 900° was 35.52 mm (SD, 2.06; range, [30.91-40.50]), the mean A-value was 8.88 mm (0.47; [7.67-10.49]), and mean B-value was 6.38 mm (0.42; [5.16-7.38]). The R2 fit of the automated to manual measurements was 0.87 for A-value, 0.70 for B-value, and 0.71 for CDL. For anti-modiolar arrays, the distance between the imaged and predicted array tip location was 0.57 mm (1.25; [0.13-5.28]). CONCLUSION Our method provides a fully automated means of cochlear analysis from clinical CTs. The distribution of CDL, dimensions, and cochlear quadrant lengths is similar to those from historical data. This approach requires no radiographic experience and is free from user-related variation. LEVEL OF EVIDENCE 3 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Caio A Neves
- Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Emma D Tran
- Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Shayna P Cooperman
- Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Nikolas H Blevins
- Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
12
|
CT imaging-based approaches to cochlear duct length estimation-a human temporal bone study. Eur Radiol 2021; 32:1014-1023. [PMID: 34463797 PMCID: PMC8794899 DOI: 10.1007/s00330-021-08189-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023]
Abstract
Objectives Knowledge about cochlear duct length (CDL) may assist electrode choice in cochlear implantation (CI). However, no gold standard for clinical applicable estimation of CDL exists. The aim of this study is (1) to determine the most reliable radiological imaging method and imaging processing software for measuring CDL from clinical routine imaging and (2) to accurately predict the insertion depth of the CI electrode. Methods Twenty human temporal bones were examined using different sectional imaging techniques (high-resolution computed tomography [HRCT] and cone beam computed tomography [CBCT]). CDL was measured using three methods: length estimation using (1) a dedicated preclinical 3D reconstruction software, (2) the established A-value method, and (3) a clinically approved otosurgical planning software. Temporal bones were implanted with a 31.5-mm CI electrode and measurements were compared to a reference based on the CI electrode insertion angle measured by radiographs in Stenvers projection (CDLreference). Results A mean cochlear coverage of 74% (SD 7.4%) was found. The CDLreference showed significant differences to each other method (p < 0.001). The strongest correlation to the CDLreference was found for the otosurgical planning software-based method obtained from HRCT (CDLSW-HRCT; r = 0.87, p < 0.001) and from CBCT (CDLSW-CBCT; r = 0.76, p < 0.001). Overall, CDL was underestimated by each applied method. The inter-rater reliability was fair for the CDL estimation based on 3D reconstruction from CBCT (CDL3D-CBCT; intra-class correlation coefficient [ICC] = 0.43), good for CDL estimation based on 3D reconstruction from HRCT (CDL3D-HRCT; ICC = 0.71), poor for CDL estimation based on the A-value method from HRCT (CDLA-HRCT; ICC = 0.29), and excellent for CDL estimation based on the A-value method from CBCT (CDLA-CBCT; ICC = 0.87) as well as for the CDLSW-HRCT (ICC = 0.94), CDLSW-CBCT (ICC = 0.94) and CDLreference (ICC = 0.87). Conclusions All approaches would have led to an electrode choice of rather too short electrodes. Concerning treatment decisions based on CDL measurements, the otosurgical planning software-based method has to be recommended. The best inter-rater reliability was found for CDLA-CBCT, for CDLSW-HRCT, for CDLSW-CBCT, and for CDLreference. Key Points • Clinically applicable calculations using high-resolution CT and cone beam CT underestimate the cochlear size. • Ten percent of cochlear duct length need to be added to current calculations in order to predict the postoperative CI electrode position. • The clinically approved otosurgical planning software-based method software is the most suitable to estimate the cochlear duct length and shows an excellent inter-rater reliability.
Collapse
|