1
|
Volgusheva AA, He Y, Maksimov GV, Maksimov EG, Kukarskikh GP, Antal TK, Rubin AB. The resistance of Chlamydomonas reinhardtii cells to the neonicotinoid сlothianidin. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02899-4. [PMID: 40411654 DOI: 10.1007/s10646-025-02899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2025] [Indexed: 05/26/2025]
Abstract
The capacity of algae to withstand the effects of toxic pollution provides a means of survival and subsequent regeneration of the phytoplankton, highlighting the importance of in-depth research of this area for aquatic ecosystems. This study investigated the effects of clothianidin (CL), a commonly used agricultural insecticide, on the freshwater alga Chlamydomonas reinhardtii. The toxic effect of CL depended on both the number of cells and the concentration of the insecticide. Generally, an observed dose-dependent decrease was evident in cell growth, chlorophyll (Chl) content, and photosynthetic efficiency, while carotenoid levels increased. Particular attention has been paid to the ability of C. reinhardtii to survive exposure to lethal concentrations of the CL, which resulted in a 60% decrease in cell number and pronounced Chl bleaching. After the photosynthetic activity had been reduced to almost zero, some cells showed the ability to restore the function of photosynthetic electron transport in a medium containing CL. The algae's resilience is linked to their bioremediation capacity, as evidenced by a 50% reduction in CL concentration (from 0.8 to 0.4 mg/L) within 10 days of exposure. Repeated CL treatments induced resistance in algae, yet this was only observed when the Chl concentration per cell recovered to the control level (2.7 pg Chl/cell). The addition of CL when the Chl/cell was 30% lower than that of the control sample resulted in no observable resistance. Cell aggregation was found to be important in the protective process, while the initial density of cells significantly influenced this effect.
Collapse
Affiliation(s)
- Alena A Volgusheva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Yanlin He
- Faculty of Biology, Shenzhen MSU-BIT University, PRC, Guangdong province, Shenzhen, China
| | - Georgy V Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina P Kukarskikh
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Taras K Antal
- Laboratory of integrated ecological research, Pskov State University, Pskov, Russia
| | - Andrew B Rubin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Pineda-Hernandez A, Castilla-Casadiego DA, Morton LD, Giordano-Nguyen SA, Halwachs KN, Rosales AM. Tunable hydrogel networks by varying secondary structures of hydrophilic peptoids provide viable 3D cell culture platforms for hMSCs. Biomater Sci 2025. [PMID: 40354141 PMCID: PMC12068446 DOI: 10.1039/d5bm00433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have excellent ability to mimic the extracellular matrix (ECM) during 3D cell culture, yet it remains difficult to tune their mechanical properties without also changing network connectivity. Previously, we developed 2D culture platforms based on tunable hydrogels crosslinked by peptoids with various secondary structures: helical, non-helical, and unstructured, which allowed control over hydrogel mechanics independent of network connectivity. Here, we extend our strategy to 3D matrices by modifying the peptoids with piperazine and homopiperazine residues to enhance water solubility without altering their secondary structure. Hydrogels crosslinked with helical peptoids exhibited significantly higher stiffness compared to hydrogels crosslinked with non-helical or unstructured peptoids. Human mesenchymal stem cells (hMSCs) encapsulated within these hydrogels were assessed for viability, proliferation, and immunomodulatory potential. The stiffest hydrogels promoted the highest rates of proliferation and increased yes-associated protein (YAP) nuclear localization. Softer hydrogels, however, showed enhanced production of indoleamine 2,3-dioxygenase (IDO), both with and without interferon gamma (IFN-γ) stimulation, highlighting their potential in immunomodulatory applications. The biomimetic platform developed here enables the study of how matrix mechanics influence stem cell behavior without confounding factors from network connectivity, leading to insights for hMSC-mediated immunomodulation.
Collapse
Affiliation(s)
- Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Logan D Morton
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | | | - Kathleen N Halwachs
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Latvyte E, Greenwood A, Bogush A, Graves J. Rapid and selective quantitative colourimetric analysis of nitrite in water using a S-Nitrosothiol based method. WATER RESEARCH X 2024; 25:100265. [PMID: 39497788 PMCID: PMC11533637 DOI: 10.1016/j.wroa.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024]
Abstract
This study introduces a novel S-nitrosothiol based method for the rapid and highly selective detection of nitrite in complex water matrices. Sodium 3-mercapto-1-propanesulfonate forms a distinctive pink S-nitrosothiol compound upon interaction with nitrite in acidic media, allowing both visual and quantitative detection. Various factors affecting the absorbance of the final product were investigated, including pH, reaction time, acid type, and sodium 3-mercapto-1-propanesulfonate concentration. UV-Vis spectrophotometric analysis demonstrated an excellent linear correlation (R2 = 0.99) across a broad detection range (0.05 to 80 mmol l-1), while showing no interference from common ions such as nitrate or dissolved organic matter, a limitation frequently observed in conventional UV-based nitrite detection methods. The assay was further adapted into a pellet form to simplify field use, operating effectively at room temperature with a low detection limit (1.4 ppm). The S-nitrosothiol based method represents a safer and more environmentally friendly option for nitrite detection and shows a promising potential as a valuable addition to both field and laboratory water testing kits for nitrite analysis.
Collapse
Affiliation(s)
- E. Latvyte
- Centre for Manufacturing and Materials, Coventry University, Beresford Avenue, Coventry, UK
| | - A. Greenwood
- School of Life Sciences, Coventry University, Whitefriars Street, Coventry, UK
| | - A. Bogush
- Centre for Agroecology, Water and Resilience, Ryton Organic Gardens, Coventry, UK
| | - J.E. Graves
- Centre for Manufacturing and Materials, Coventry University, Beresford Avenue, Coventry, UK
| |
Collapse
|
4
|
Babcock NS. Open quantum systems theory of ultraweak ultraviolet photon emissions: Revisiting Gurwitsch's onion experiment as a prototype for quantum biology. Comput Struct Biotechnol J 2024; 26:78-91. [PMID: 39717158 PMCID: PMC11664013 DOI: 10.1016/j.csbj.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
A century ago it was discovered that metabolic processes in living cells emit a spectrum of very low intensity radiation. This was based on observations that radiant energy from proliferating cells can amplify the rate of cell division in other nearby cellular life. Although metabolic radiation is now thoroughly documented in research on ultraweak photon emissions (UPE), the original finding that UPE can enhance mitogenesis remains controversial. This controversy is addressed by establishing a physical basis for phenomenological observations that biological UPE can amplify mitogenesis in living cells. Enhanced mitosis is rationalized as a resonance effect based on open quantum systems theory using Fano and Feshbach's methods. This application of quantum theory to biology has important consequences for understanding health, medicine, and principles of living matter.
Collapse
Affiliation(s)
- Nathan S. Babcock
- Quantum Biology Laboratory, Howard University, 2400 6th St. NW, Washington, D.C., 20059, United States of America
| |
Collapse
|
5
|
Gravato C, da Silva Barbosa R, Cavallini GS, Cruz ÁB, Pereira DH, de Souza NLGD, Carlos TD, Soares AM, Sarmento RA. Theoretical insights, degradation, and sub-lethal toxicity of thiamethoxam to the planarian Girardia tigrina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44068-44079. [PMID: 38922471 DOI: 10.1007/s11356-024-34067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Advanced oxidative processes, such as Photo-Fenton, transform organic contaminants due to the attack by radicals. In this context, the lethal and sub-lethal effects of the Cruiser® 350FS (CRZ) with the active ingredient thiamethoxam (TMX) were investigated using the planarian Girardia tigrina. Degradation of thiamethoxam by the Fenton process was also assessed by using theoretical studies and the efficiency of Solar-Fenton versus Fenton. The 48 h LC50 value of CRZ for planarians was 478.6 mg L-1. The regeneration of planarians was significantly affected for concentrations ≥ 17 mg·L-1 of TMX (24 h). The Solar-Fenton showed a high degradation percentage reaching ~70%. The theoretical model showed the atoms of the TMX molecule that will suffer attacks from the formed radicals. Current results open new perspectives concerning the treatment of TMX in the aquatic environment because the 70% degradation seems to be sufficient to reach concentrations that do not induce sub-lethal effects in planarians. Further studies should determine if the by-products generated might be toxic for planaria or other organisms.
Collapse
Affiliation(s)
- Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, 1749-016, Portugal
| | - Rone da Silva Barbosa
- National Institute of Science and Technology on Terrestrial Ecotoxicology, Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Állefe Barbosa Cruz
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Douglas Henrique Pereira
- Programa de Pós-Graduação em Química, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | - Thayrine Dias Carlos
- Bionorte - Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, TO, 77402-970, Brazil
| | - Amadeu Mvm Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Renato Almeida Sarmento
- National Institute of Science and Technology on Terrestrial Ecotoxicology, Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil.
| |
Collapse
|
6
|
Tempke R, Musho T. Autonomous generation of single photon emitting materials. NANOSCALE 2024; 16:10239-10249. [PMID: 38726673 DOI: 10.1039/d3nr04944b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The utilization of machine learning in Materials Science underscores the critical importance of the quality and quantity of data in training models effectively. Unlike fields such as image processing and natural language processing, there is limited availability of atomistic datasets, leading to biases in training data. Particularly in the domain of materials discovery, there exists an issue of continuity in atomistic datasets. Experimental data sourced from literature and patents is usually only available for favorable data, resulting in bias in the training dataset. This study focuses on developing a SMILES-based model for generating synthetic datasets of quantum materials using a variational autoencoder. This study centers on the generation of a synthetic dataset of quantum materials specifically for quantum sensing applications, with a focus on two-level quantum molecules that exhibit a dipole blockade. The proposed technique offers an improved sampling algorithm by incorporating newly generated data into the sampling algorithm to create a more normally distributed dataset. Through this technique, the study was able to generate over 1 000 000 candidate quantum materials from a small dataset of only 8000 materials. The generated dataset identified several iodine-containing molecules as promising single photon emitting materials for potential quantum sensing applications.
Collapse
Affiliation(s)
- Robert Tempke
- Department of Mechanical, Materials and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV, USA.
| | - Terence Musho
- Department of Mechanical, Materials and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV, USA.
| |
Collapse
|
7
|
Zhao J, Shang C, Yin R. A High-Radical-Yield Advanced Oxidation Process Coupling Far-UVC Radiation with Chlorinated Cyanurates for Micropollutant Degradation in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18867-18876. [PMID: 37158565 DOI: 10.1021/acs.est.3c00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing the radical yield and reducing energy consumption would enhance the sustainability and competitiveness of advanced oxidation processes (AOPs) for micropollutant degradation in water. We herein report a novel AOP coupling far-UVC radiation at 222 nm with chlorinated cyanurates (termed the UV222/Cl-cyanurates AOP) for radical generation and micropollutant abatement in water. We experimentally determined the concentrations of HO•, Cl•, and ClO• in the UV222/Cl-cyanurates AOP in deionized water and swimming pool water. The radical concentrations are 10-27 times and 4-13 times, respectively, higher than those in the UV254/Cl-cyanurates AOP and the well-documented UV254/chlorine AOP under comparable conditions (e.g., same UV fluence and oxidant dosing). We determined the molar absorption coefficients and innate quantum yields of two chlorine species and two Cl-cyanurates at 222 nm and incorporated these parameters into a kinetic model. The model enables accurate prediction of oxidant photodecay rates as well as the pH impact on radical generation in the UV222/Cl-cyanurates AOP. We predicted the pseudo-first-order degradation rate constants of 25 micropollutants in the UV222/Cl-cyanurates AOP and demonstrated that many micropollutants can be degraded by >80% with a low UV fluence of 25 mJ cm-2. This work advances the fundamental photochemistry of chlorine and Cl-cyanurates at 222 nm and offers a highly effective engineering tool in combating micropollutants in water where Cl-cyanurates are suitable to use.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
8
|
Pinto SCS, Gonçalves RCR, Costa SPG, Raposo MMM. Colorimetric Chemosensor for Cu 2+ and Fe 3+ Based on a meso-Triphenylamine-BODIPY Derivative. SENSORS (BASEL, SWITZERLAND) 2023; 23:6995. [PMID: 37571777 PMCID: PMC10422517 DOI: 10.3390/s23156995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Optical chemosensors are a practical tool for the detection and quantification of important analytes in biological and environmental fields, such as Cu2+ and Fe3+. To the best of our knowledge, a BODIPY derivative capable of detecting Cu2+ and Fe3+ simultaneously through a colorimetric response has not yet been described in the literature. In this work, a meso-triphenylamine-BODIPY derivative is reported for the highly selective detection of Cu2+ and Fe3+. In the preliminary chemosensing study, this compound showed a significant color change from yellow to blue-green in the presence of Cu2+ and Fe3+. With only one equivalent of cation, a change in the absorption band of the compound and the appearance of a new band around 700 nm were observed. Furthermore, only 10 equivalents of Cu2+/Fe3+ were needed to reach the absorption plateau in the UV-visible titrations. Compound 1 showed excellent sensitivity toward Cu2+ and Fe3+ detection, with LODs of 0.63 µM and 1.06 µM, respectively. The binding constant calculation indicated a strong complexation between compound 1 and Cu2+/Fe3+ ions. The 1H and 19F NMR titrations showed that an increasing concentration of cations induced a broadening and shifting of the aromatic region peaks, as well as the disappearance of the original fluorine peaks of the BODIPY core, which suggests that the ligand-metal (1:2) interaction may occur through the triphenylamino group and the BODIPY core.
Collapse
Affiliation(s)
| | | | | | - M. Manuela M. Raposo
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.C.S.P.); (R.C.R.G.)
| |
Collapse
|
9
|
Arunkumar T, Sathyamurthy R, Denkenberger D, Lee SJ. Solar distillation meets the real world: a review of solar stills purifying real wastewater and seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22860-22884. [PMID: 35060059 DOI: 10.1007/s11356-022-18720-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Solar energy-driven evaporation-based freshwater production is one of the sustainable ways to purify contaminated/salty water. Recent advances in solar absorbers' assemblies, design modifications, and integrations with heating sources improved the rate of freshwater productivity. However, the type of feed water affects the evaporation rate in a solar desalination system (SDS). Many studies used tap water with added contaminants to test the performance of a SDS and studied the water quality improvement. As a typical result, pH, total dissolved solids (TDS), and electrical conductivity (µS/cm) are reduced after solar evaporation. The performance of SDSs for real wastewaters are also important to understand, e.g., the reduction of high organic pollutants after solar evaporation. In this aspect, the main objective of the present work is to review solar distillation of real wastewaters and seawater by using SDSs. Further, the mechanism of a solar distiller with heat transfer principles, parameters affecting evaporation process, real wastewaters and seawaters purified in a solar distillation system, improvement of various parameters before and after solar evaporation, pathways of handling wastewaters, challenges, and future perspectives are discussed. Conclusively, SDSs are found to remove pollutants effectively after solar evaporation. The evaporation rate is relatively slower due to high concentration of pollutants that reduce vapor pressure. The COD removal of various real wastewaters, including sludge, kitchen, textile, palm oil, petroleum, water plant, and municipal wastewaters, was 98.13%, 97.85%, 96.84%, 96.71%, 87.99%, 86.99%, and 85.67%, respectively. The reduction rate of salt concentration in real seawater after evaporation in the solar distiller was 99.99%.
Collapse
Affiliation(s)
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, , Coimbatore, 641407, Tamil Nadu, India
| | - David Denkenberger
- Mechanical Engineering and the Alaska Center for Energy and Power, University of Alaska Fairbanks, Alaska, USA
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
10
|
Alba-González P, Álvarez-Salgado XA, Cobelo-García A, Kaal J, Teira E. Faeces of marine birds and mammals as substrates for microbial plankton communities. MARINE ENVIRONMENTAL RESEARCH 2022; 174:105560. [PMID: 35021141 DOI: 10.1016/j.marenvres.2022.105560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The chemical composition of the seawater soluble fraction (WSF) of yellow-legged gulls and harbour seal faeces and their impact on microbial plankton communities from an eutrophic coastal area have been tested. After characterisation of the C:N:P stoichiometry, trace metals content and organic molecular composition of the faeces, significant differences between species have been observed in all parameters. Seagull faeces present about three times larger N content than seal faeces and are also richer in trace elements except for Cu and Zn. Organic nitrogen in seagull faeces is dominated by uric acid, while the proteins are the main N source in seal faeces. It is remarkable that seagull faeces are five times more soluble in seawater than seal faeces and present a much higher N content (48.0 versus 3.5 mg N in the WSF per gram of dry faeces), >85% of which as dissolved organic nitrogen, with C:N molar ratios of 2.4 and 13 for seagull and seal faeces, respectively. Based on this contrasting N content, large differences were expected in their impact on microbial populations. To test this hypothesis, a 3-day microcosm incubation experiment was performed, in which coastal seawater was amended with realistic concentrations of the WSF of seagull or seal faeces. A significant and similar increase in bacterial biomass occurred in response to both treatments. In the case of phytoplankton, the impact of the treatment with seagull faeces was significantly larger that the effect of the treatment with seal faeces. Our data suggest that the distinct competitive abilities of phytoplankton and bacteria largely influence the potential impact of distinct animal faeces on primary productivity in coastal ecosystems. Impacts on the microbial plankton communities do not affect only this trophic level, but the whole trophic chain, contributing to nutrient recycling in coastal areas where large populations of these species are settled.
Collapse
Affiliation(s)
- Pablo Alba-González
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, E36310, Vigo, Spain
| | | | | | | | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, E36310, Vigo, Spain
| |
Collapse
|
11
|
Gupta R, El Sayed S, Goddard NJ. Hydrogel gratings with patterned analyte responsive dyes for spectroscopic sensing. RSC Adv 2021; 11:40197-40204. [PMID: 35494120 PMCID: PMC9044543 DOI: 10.1039/d1ra08610c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
This is an unprecedented report of hydrogel gratings with an analyte responsive dye immobilised in alternating strips where the patterned dye is its own dispersive element to perform spectroscopy. At each wavelength, the diffraction efficiency of hydrogel gratings is a function of dye absorbance, which in turn is dependent on the concentration of analytes in samples. Thus, changes in intensity of diffracted light of hydrogel gratings were measured for sensing of analytes. Equally, the ratio of diffracted intensities at two wavelengths was used for quantification of analytes to reduce errors caused by variations in intensity of light sources and photobleaching of dyes. 15.27 μm pitch gratings were fabricated by exposing 175 μm thick films of photofunctionalisable poly(acrylamide) hydrogel in a laser interferometric lithography setup, generating an array of alternating lines with and without free functional groups. The freed functional groups were reacted with pH sensitive fluorescein isothiocyanate to create gratings for measurement of pH. The ratio of intensity of diffracted light of hydrogel gratings at 430 and 475 nm was shown to be linear over 4 pH units, which compares favourably with ∼2 pH units for conventional absorption spectroscopy. This increased dynamic range was a result of cancellation of the opposite non-linearities in the pH response of the analyte responsive dye and the diffraction efficiency as a function of dye absorbance.
Collapse
Affiliation(s)
- Ruchi Gupta
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - Sameh El Sayed
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | | |
Collapse
|
12
|
Chen T, Li K, Ma F, Qiu X, Qiu Z, Liao Z, Zhang G. Application of Excimer Lamp in Quantitative Detection of SF 6 Decomposition Component SO 2. SENSORS (BASEL, SWITZERLAND) 2021; 21:8165. [PMID: 34960259 PMCID: PMC8705914 DOI: 10.3390/s21248165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
Accurate quantitative detection for trace gas has long been the center of failure diagnosis for gas-insulated equipment. An absorption spectroscopy-based detection system was developed for trace SF6 decomposition SO2 detection in this paper. In order to reduce interference from other decomposition, ultraviolet spectrum of SO2 was selected for detection. Firstly, an excimer lamp was developed in this paper as the excitation of the absorption spectroscopy compared with regular light sources with electrodes, such as electrodeless lamps that are more suitable for long-term monitoring. Then, based on the developed excimer lamp, a detection system for trace SO2 was established. Next, a proper absorption peak was selected by calculating spectral derivative for further analysis. Experimental results indicated that good linearity existed between the absorbance and concentration of SO2 at the chosen absorption peak. Moreover, the detection limit of the proposed detection system could reach the level of 10-7. The results of this paper could serve as a guide for the application of excimer lamp in online monitoring for SF6-insulated equipment.
Collapse
Affiliation(s)
- Tunan Chen
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.C.); (K.L.); (Z.Q.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Li
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.C.); (K.L.); (Z.Q.); (Z.L.)
| | - Fengxiang Ma
- Electrical Power Research Institute, Anhui Electrical Power Co., Ltd., State Grid, Hefei 230601, China; (F.M.); (X.Q.)
| | - Xinjie Qiu
- Electrical Power Research Institute, Anhui Electrical Power Co., Ltd., State Grid, Hefei 230601, China; (F.M.); (X.Q.)
| | - Zongjia Qiu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.C.); (K.L.); (Z.Q.); (Z.L.)
| | - Zhenghai Liao
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.C.); (K.L.); (Z.Q.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (T.C.); (K.L.); (Z.Q.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|