1
|
He C, Du Y, Chen R, Qiu Y, Huang J, Lin L, Kilby MD, Fu Y, Qi H, Baker PN, Tong C. Overload of Neprilysin in Placental Extracellular Vesicles Disrupts CNP-NPRB-Mediated Communication Between Vascular Endothelial and Smooth Muscle Cells: A Trigger for Symptoms of Preeclampsia. Circ Res 2025. [PMID: 40304042 DOI: 10.1161/circresaha.124.325673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Preeclampsia is a placenta-origin pregnancy complication. Although its development has long been divided into 2 stages: abnormal placentation (stage I) and the release of factors from the hypoperfused placenta into circulation, triggering preeclampsia due to endothelial dysfunction (stage II), the placenta-derived substances coupling the 2 stages remain unclear. METHODS Extracellular vesicles (EVs) from normal and preeclampsia-complicated placentas were intravenously administered to pregnant mice, and blood pressure was recorded throughout pregnancy. The differential cargo, including NEP (neprilysin), of placental EVs in normal and preeclamptic placentas was identified by LC-MS, and the cell types involved in NEP expression in the placenta were determined by single-cell RNA sequencing. The effects of placental EVs and recombinant mouse NEP on the uterine arteries were assessed by myography. Placenta-specific NEP overexpression mice were established by in situ injection of adenovirus. The binding affinity between NEP and the vasodilative peptides was determined using an Octet instrument. NEP-overexpressing HUVECs were established to measure CNP (C-type natriuretic peptide) release and cocultured with NPRB (natriuretic peptide receptor-B) knockdown vascular smooth muscle cells (VSMCs) to measure cGMP production in VSMCs. RESULTS Placental EVs from preeclamptic pregnancies impaired vascular endothelium-dependent vasodilation and induced preeclampsia in mice. NEP was expressed predominantly by syncytiotrophoblasts and upregulated in placental EVs from preeclamptic pregnancies. Recombinant mouse NEP administration resulted in outcomes like those of administration of placental EVs from preeclamptic pregnancies. Placenta-specific NEP overexpression disturbed maternal hemodynamics, resulting in hypertension and proteinuria of the mice. CNP exhibited high binding affinity for NEP, and NEP upregulation in HUVECs inhibited CNP release, which further influenced the production of cGMP in VSMCs; however, this effect was largely blunted in NPRB-deficient VSMCs. CONCLUSIONS Excessive NEP in placental EVs from preeclamptic pregnancies is transported into the endothelial cells of uterine and placental arteries to cleave and degrade CNP, resulting in compromised CNP paracrine activity and NPRB-mediated cGMP production in adjacent VSMCs and triggering the hypertensive manifestation of preeclampsia.
Collapse
Affiliation(s)
- Chengjin He
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Yi Du
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University (R.C.)
| | - Yuhan Qiu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, China (Y.Q.)
| | - Jiayu Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Li Lin
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, China (L.L.)
| | - Mark D Kilby
- Fetal Medicine Centre, Birmingham Women's and Children's Foundation Trust, United Kingdom (M.D.K.)
- College of Medical and Health Sciences, University of Birmingham, United Kingdom (M.D.K.)
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.H., Y.D., J.H., Y.F., H.Q.)
| | - Philip N Baker
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, United Kingdom (P.N.B.)
| | - Chao Tong
- Growth, Development and Mental Health Center of Children and Adolescents, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, China (C.T.)
| |
Collapse
|
2
|
Gogoleva N, Shahri ZJ, Noda A, Liao CW, Wakimoto A, Inoue Y, Jeon H, Takahashi S, Hamada M. Intraplacental injection of AAV9-CMV-iCre results in the widespread transduction of multiple organs in double-reporter mouse embryos. Exp Anim 2023; 72:460-467. [PMID: 37183025 PMCID: PMC10658086 DOI: 10.1538/expanim.23-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Adeno-associated virus serotype 9 (AAV9) has become a popular tool for gene transfer because of its ability to cross the blood-brain barrier and efficiently transduce genetic material into a variety of cell types. The study utilized GRR (Green-to-Red Reporter) mouse embryos, in which the expression of iCre results in the disappearance of Green Fluorescent Protein (GFP) expression and the detection of Discosoma sp. Red Fluorescent Protein (DsRed) expression by intraplacental injection. Our results demonstrate that AAV9-CMV-iCre can transduce multiple organs in embryos at developmental stages E9.5-E11.5, including the liver, heart, brain, thymus, and intestine. These findings suggest that intraplacental injection of AAV9-CMV-iCre is a viable method for the widespread transduction of GRR mouse embryos.
Collapse
Affiliation(s)
- Natalia Gogoleva
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsushi Noda
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ching-Wei Liao
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Arata Wakimoto
- Ph.D. Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
3
|
Kihara Y, Tanaka Y, Ikeda M, Homma J, Takagi R, Ishigaki K, Yamanouchi K, Honda H, Nagata S, Yamato M. In utero transplantation of myoblasts and adipose-derived mesenchymal stem cells to murine models of Duchenne muscular dystrophy does not lead to engraftment and frequently results in fetal death. Regen Ther 2022; 21:486-493. [PMID: 36313392 PMCID: PMC9596598 DOI: 10.1016/j.reth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a progressive disease that leads to damage of muscle and myocardium due to genetic abnormalities in the dystrophin gene. In utero cell transplantation that might facilitate allogenic transplantation is worth considering to treat this disease. Methods We performed allogeneic in utero transplantation of GFP-positive myoblasts and adipose-derived mesenchymal stem cells into murine DMD model animals. The transplantation route in this study was fetal intraperitoneal transplantation and transplacental transplantation. Transplanted animals were examined at 4-weeks old by immunofluorescence staining and RT-qPCR. Results No GFP-positive cells were found by immunofluorescence staining of skeletal muscle and no GFP mRNA was detected by RT-qPCR in any animal, transplantation method and cell type. Compared with previous reports, myoblast transplantation exhibited an equivalent mortality rate, but adipose-derived stem cell (ASC) transplantation produced a higher mortality rate. Conclusions In utero transplantation of myoblasts or ASCs to murine models of DMD does not lead to engraftment and, in ASC transplantation primarily, frequently results in fetal death.
Collapse
Affiliation(s)
- Yuki Kihara
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Yukie Tanaka
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masanari Ikeda
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keiko Ishigaki
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Honda
- Human Disease Models, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan,Corresponding author. Fax: +81 3-3359-6046.
| |
Collapse
|