1
|
Wu T, Bi F, Liu H, Wang S, He P, Zhang J. Identification of nitrogen-fixing bacteria on green tide-causing species and evaluation of their nitrogen-fixing capacity. BIORESOURCE TECHNOLOGY 2025; 428:132450. [PMID: 40147567 DOI: 10.1016/j.biortech.2025.132450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Different algae host distinct phycosphere microenvironments, where mutualistic relationships between algae and symbiotic and epiphytic bacteria are common. Ulva prolifera (U. prolifera) harbors a diverse microbial community that plays a crucial role in its morphogenesis and growth. In this study, 28 bacterial strains were isolated from U. prolifera using 2216E medium. Molecular identification via the nifH gene (nitrogenase coding gene) revealed that three of these strains harbored the nifH gene, all belonging to the genus Cobetia. When co-cultured with sterile U. prolifera for 31 days, the results indicated that these nitrogen-fixing bacteria significantly enhanced the growth of U. prolifera. Nitrogenase activity was quantified, which demonstrated that these bacteria supplied nitrogen to U. prolifera through biological nitrogen fixation, thus promoting its growth. This study demonstrates that there are indeed microorganisms with nitrogen-fixing ability on the U. prolifera, which provide nitrogen for U. prolifera and significantly promote its growth.
Collapse
Affiliation(s)
- Tingting Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuoqi Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Jameson BD, Murdock SA, Ji Q, Stevens CJ, Grundle DS, Kim Juniper S. Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N 2O cycling. Commun Biol 2023; 6:212. [PMID: 36823449 PMCID: PMC9950131 DOI: 10.1038/s42003-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The mechanisms by which large-scale microbial community function emerges from complex ecological interactions between individual taxa and functional groups remain obscure. We leveraged network analyses of 16S rRNA amplicon sequences obtained over a seven-month timeseries in seasonally anoxic Saanich Inlet (Vancouver Island, Canada) to investigate relationships between microbial community structure and water column N2O cycling. Taxa separately broadly into three discrete subnetworks with contrasting environmental distributions. Oxycline subnetworks were structured around keystone aerobic heterotrophs that correlated with nitrification rates and N2O supersaturations, linking N2O production and accumulation to taxa involved in organic matter remineralization. Keystone taxa implicated in anaerobic carbon, nitrogen, and sulfur cycling in anoxic environments clustered together in a low-oxygen subnetwork that correlated positively with nitrification N2O yields and N2O production from denitrification. Close coupling between N2O producers and consumers in the anoxic basin is indicated by strong correlations between the low-oxygen subnetwork, PICRUSt2-predicted nitrous oxide reductase (nosZ) gene abundances, and N2O undersaturation. This study implicates keystone taxa affiliated with common ODZ groups as a potential control on water column N2O cycling and provides a theoretical basis for further investigations into marine microbial interaction networks.
Collapse
Affiliation(s)
- Brett D Jameson
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Sheryl A Murdock
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
| | - Qixing Ji
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- Thrust of Earth, Ocean & Atmospheric Sciences, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Catherine J Stevens
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Damian S Grundle
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- School of Ocean Futures & School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287-7904, USA
| | - S Kim Juniper
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Ocean Networks Canada, 2474 Arbutus Road, Victoria, BC, V8N 1V8, Canada
| |
Collapse
|
3
|
Turk-Kubo KA, Mills MM, Arrigo KR, van Dijken G, Henke BA, Stewart B, Wilson ST, Zehr JP. UCYN-A/haptophyte symbioses dominate N 2 fixation in the Southern California Current System. ISME COMMUNICATIONS 2021; 1:42. [PMID: 36740625 PMCID: PMC9723760 DOI: 10.1038/s43705-021-00039-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2 fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2 fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2 fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2 fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l-1 d-1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2 fixation rates were higher (151.1 ± 112.7 fmol N cell-1 d-1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell-1 d-1). N2 fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.
Collapse
Affiliation(s)
- Kendra A Turk-Kubo
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA.
| | - Matthew M Mills
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Kevin R Arrigo
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Gert van Dijken
- Earth System Science, Stanford University, Stanford, CA, USA
| | - Britt A Henke
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Brittany Stewart
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Samuel T Wilson
- Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|