1
|
Bandara S, Raveendran S. Current Landscape and Future Directions in Cancer Immunotherapy: Therapies, Trials, and Challenges. Cancers (Basel) 2025; 17:821. [PMID: 40075668 PMCID: PMC11899461 DOI: 10.3390/cancers17050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a leading global health challenge, placing immense burdens on individuals and healthcare systems. Despite advancements in traditional treatments, significant limitations persist, including treatment resistance, severe side effects, and disease recurrence. Immunotherapy has emerged as a promising alternative, leveraging the immune system to target and eliminate tumour cells. However, challenges such as immunotherapy resistance, patient response variability, and the need for improved biomarkers limit its widespread success. This review provides a comprehensive analysis of the current landscape of cancer immunotherapy, highlighting both FDA-approved therapies and novel approaches in clinical development. It explores immune checkpoint inhibitors, cell and gene therapies, monoclonal antibodies, and nanotechnology-driven strategies, offering insights into their mechanisms, efficacy, and limitations. By integrating emerging research and clinical advancements, this review underscores the need for continued innovation to optimise cancer immunotherapy and overcome existing treatment barriers.
Collapse
Affiliation(s)
- Shehani Bandara
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Sreejith Raveendran
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
2
|
Langley BO, Rillamas-Sun E, Huang Y, Indorf A, Robles M, Feaster R, D'Addario L, Ergas IJ, Roh JM, Kushi LH, Greenlee H. Validation and Utility of Drug-Nutrient Interaction and Dietary Supplement Mechanistic Activity in the Natural Medicines Database. JCO ONCOLOGY ADVANCES 2024; 1:e2400062. [PMID: 39758135 PMCID: PMC11698021 DOI: 10.1200/oa-24-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE The increasing use of dietary supplements by patients with cancer and other chronic diseases requires the systematized review of potential interactions between prescription drugs and nutrients from supplements by health care and clinical research teams. Dietary supplement interaction databases are positioned to fill a gap in quantifying potential risks for patients, although none have been assessed for reliability in data interpretation. The NatMed database, a source for comprehensive reports on mechanistic and safety data for dietary supplement ingredients, was evaluated for use in future investigations. METHODS Data from NatMed were retrieved using licensed end points for ingredient monographs with drug-nutrient interactions with doxorubicin across five pharmacokinetic and metabolic pathways, and for ingredient monographs with antioxidant activity. Interactions between dietary supplements and doxorubicin treatment and antioxidant monographs were independently reviewed and characterized by clinical pharmacists. Cohen's K was used to measure interrater reliability and the degree of agreement between pharmacists. RESULTS Three hundred fifteen potential interactions with doxorubicin (n = 115 monographs) and 455 other antioxidant ingredients were identified and reviewed by clinical pharmacists. There was substantial to near-perfect agreement for drug-nutrient interactions with doxorubicin (Cohen's K = 0.64-0.85) and for antioxidants (Cohen's K = 0.84). A small proportion of retrieved monographs were not validated by the clinical pharmacists for interactions with doxorubicin (n = 20 occurrences, 6.4%) or for antioxidant activity (n = 28, 6.2%). CONCLUSION A high degree of reliability in data on dietary supplement interactions with doxorubicin and mechanisms of action suggests NatMed may be a dependable source of data for future investigators. Additional procedures including independent data validation and use of multiple dietary supplement interaction databases will strengthen the quality of findings in future studies.
Collapse
Affiliation(s)
- Blake O. Langley
- Fred Hutchinson Cancer Center, Public Health Sciences Division, Seattle, WA
| | | | - Yuhan Huang
- Fred Hutchinson Cancer Center, Public Health Sciences Division, Seattle, WA
- University of Washington, School of Public Health, Seattle, WA
| | - Amy Indorf
- Fred Hutchinson Cancer Center, Department of Pharmacy, Seattle, WA
| | - Michael Robles
- Fred Hutchinson Cancer Center, Department of Pharmacy, Seattle, WA
| | - Rachel Feaster
- Fred Hutchinson Cancer Center, Department of Pharmacy, Seattle, WA
| | - Lia D'Addario
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Isaac J. Ergas
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Janise M. Roh
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Lawrence H. Kushi
- Kaiser Permanente Northern California, Division of Research, Oakland, CA
| | - Heather Greenlee
- Fred Hutchinson Cancer Center, Public Health Sciences Division, Seattle, WA
- University of Washington, School of Public Health, Seattle, WA
- University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
3
|
Li J, Gao M, Wang Y, Wang W, Meng S, Zhang X, Zhang C, Liu P, Zhang X, Zheng Z, Zhang R. NIR-II Absorption/Emission Dual Function Based 2D Targeted Nanotheranostics for Tunable Hydrogenothermal Therapy. Adv Healthc Mater 2024; 13:e2401060. [PMID: 38815213 DOI: 10.1002/adhm.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for treating tumors that offers multiple advantages. Nevertheless, its practical use in clinical settings faces several limitations, such as suboptimal delivery efficiency, uneven heat distribution, and challenges in predicting optimal treatment duration. In addition, the localized hyperthermia generated by the PTT method to induce cell apoptosis can result in the production of excessive reactive oxygen species (ROS) and the release of inflammatory cytokines, which can pose a threat to the healthy tissues surrounding the tumor. To address the above challenges, this work designs an integrated H2 delivery nanoplatform for multimodal imaging H2 thermal therapy. The combination of the second near-infrared window (NIR-II) fluorescence imaging (FL) agent (CQ4T) and the photothermal and photoacoustic (PA) properties of Ti3C2 (TC) enables real-time monitoring of the tumor area and guides photothermal treatment. Simultaneously, due to the acid-responsive H2 release characteristics of the nanoplatform, H2 can be utilized for synergistic photothermal therapy to eradicate tumor cells effectively. Significantly, acting as an antioxidant and anti-inflammatory agent, Ti3C2-BSA-CQ4T-H2 (TCBCH) protects peritumoral normal cells from damage. The proposed technique utilizing H2 gas for combination therapies and multimodal imaging integration exhibits prospects for effective and secure treatment of tumors in future clinical applications.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mengting Gao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenxuan Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shichao Meng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Zhang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chongqing Zhang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Pengmin Liu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
| |
Collapse
|
4
|
Mosalam EM, Abdel-Bar HM, Elberri AI, Abdallah MS, Zidan AAA, Batakoushy HA, Abo Mansour HE. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer's disease. Int J Biol Macromol 2024; 275:133742. [PMID: 38986998 DOI: 10.1016/j.ijbiomac.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
This study aims to investigate the molecular mechanisms and the neuroprotective effect of hyaluronic acid modified verapamil-loaded carbon quantum dots (VRH-loaded HA-CQDs) against an in-vitro Alzheimer's disease model induced by amyloid beta (Aβ) in SH-SY5Y and Neuro 2a neuroblastoma cells. Briefly, different HA-CQDs were prepared using hydrothermal method and optimized by Box-Behnken design to maximize quantum yield and minimize particle size. Serum stable negatively charged VRH-loaded HA-CQDs was successfully prepared by admixing the optimized HA-CQDs and VRH with association efficiency and loading capacity of 81.25 ± 3.65 % and 5.11 ± 0.81 %, respectively. Cells were pretreated with VRH solution or loaded-HA-CQDs followed by exposure to Aβ. Compared to the control group, amyloidosis led to reduction in cellular proliferation, mitochondrial membrane potential, expression of cytochrome P450, cytochrome c oxidase, CREB-regulated transcriptional coactivator 3, and mitotic index, along with marked increase in reactive oxygen species (ROS) and inflammatory cytokines. Pretreatment with VRH, either free or loaded HA-CQDs, enhanced cell survival, mitochondrial membrane potential, mitotic index, and gene expression. It also reduced inflammation and ROS. However, VRH-loaded HA-CQDs exhibited superior effectiveness in the measured parameters. These findings suggest that VRH-loaded HA-CQDs have enhanced therapeutic potential compared to free VRH in mitigating amyloidosis negative features.
Collapse
Affiliation(s)
- Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt.
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Menoufia, Egypt.
| | - Mahmoud S Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), 32897 Sadat City, Egypt; Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid, Jordan.
| | | | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, 32511 Shebin EL-Kom, Menoufia, Egypt.
| |
Collapse
|
5
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
7
|
Qin Y, Zheng Z, Chen X, Liu Q, Ren S, Zhang W, Duan A, Zhang R. Tumor Microenvironment‐Activated Nanosystem With High Aggregation and On‐Demand Degradation for Imaging‐Guided Synergistic Hydrogenothermal Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yufei Qin
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Ziliang Zheng
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Xuejiao Chen
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Qin Liu
- Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
| | - Shilei Ren
- Information and Communication Engineering School of Information and Communication Engineering North University of China Taiyuan 030032 China
| | - Weiwei Zhang
- Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
| | - Ailin Duan
- Department of Biochemistry and Molecular Biology Shanxi Medical University Taiyuan 030001 China
| | - Ruiping Zhang
- Department of Radiology Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan 030032 China
| |
Collapse
|
8
|
The Potential Application of Extracellular Vesicles from Liquid Biopsies for Determination of Pharmacogene Expression. Pharmaceuticals (Basel) 2022; 15:ph15020252. [PMID: 35215364 PMCID: PMC8879428 DOI: 10.3390/ph15020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pharmacogenomics (PGx) entails the study of heritability of drug response. This may include both variability in genes related to pharmacokinetics (drug absorption, distribution, metabolism and excretion) and pharmacodynamics (e.g., drug receptors or signaling pathways). Individualizing drug therapy taking into account the genetic profile of the patient has the potential to make drug therapy safer and more effective. Currently, this approach relies on the determination of genetic variants in pharmacogenes by genotyping. However, it is widely acknowledged that large variability in gene expression is attributed to non-structural genetic variants. Therefore, at least from a theoretical viewpoint individualizing drug therapy based upon expression of pharmacogenes rather than on genotype may be advantageous but has been difficult to implement in the clinical setting. Extracellular vesicles (EVs) are lipid encapsulated structures that contain cargo such as lipids, nucleic acids and proteins. Since their cargo is tissue- and cell-specific they can be used to determine the expression of pharmacogenes in the liver. In this review, we describe methods of EV isolation and the potential of EVs isolated from liquid biopsies as a tool to determine the expression of pharmacogenes for use in personalized medicine.
Collapse
|
9
|
Femi-Olabisi FJ, Ishola AA, Faokunla O, Agboola AO, Babalola BA. Evaluation of the inhibitory potentials of selected compounds from Costus spicatus (Jacq.) rhizome towards enzymes associated with insulin resistance in polycystic ovarian syndrome: an in silico study. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:176. [PMID: 34812979 PMCID: PMC8611123 DOI: 10.1186/s43141-021-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/06/2021] [Indexed: 11/10/2022]
Abstract
Background Polycystic ovary syndrome (PCOS) is a chronic endocrine disorder prevalent in premenopausal women and is characterized by a range of physiological and biochemical abnormalities which may include reproductive, endocrine, and metabolic alterations such as insulin resistance. Insulin resistance is the hallmark of PCOS as it predisposes the affected subjects to a higher risk of impaired glucose tolerance and type 2 diabetes mellitus (T2DM). In this study, the inhibitory activities of phytosterols and saccharides from aqueous extract of Costus spicatus rhizome were investigated against phosphoenolpyruvate carboxykinase (PEPCK), α-amylase, β-glucosidase, and fructose 1,6-biphosphatase (FBPase) in silico as potential novel therapeutic targets for T2DM-associated-PCOS. Phytochemical constituents of the plant were determined using gas chromatography-mass spectrophotometry (GC-MS), while molecular docking of the compounds with PEPCK, α-amylase, β-glucosidase, and FBPase was conducted using Vina. Thereafter, the binding modes were determined using Discovery Studio Visualizer, 2020. Results GCMS analysis of an aqueous extract of Costus spicatus rhizome revealed the presence of three compounds with a higher binding affinity for all enzymes studied compared to metformin. The compounds also interacted with key amino acid residues crucial to the enzyme’s activities. This study identified Lyxo-d-manno-nononic-1,4-lactone as potential multi-target inhibitors of PEPCK, α-amylase, β-glucosidase, and FBPase with reasonable pharmacokinetic properties and no significant toxicity. Conclusion These compounds can be explored as potential therapeutic agents for the management of insulin resistance in PCOS, subject to further experimental validation.
Collapse
Affiliation(s)
| | - Ahmed Adebayo Ishola
- Central Research Laboratory, 132B University road, Tanke, Ilorin, Kwara State, Nigeria.
| | - Opeyemi Faokunla
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | | | | |
Collapse
|