1
|
Atee F, Palanisamy SR, Marimuthu M, Thulasy S, Rajasekaran R, Natesan S. Biochemical basis of resistance toward maize insect pests of different feeding guild and their inter-guild interactions. PLANTA 2025; 261:129. [PMID: 40332612 DOI: 10.1007/s00425-025-04697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
MAIN CONCLUSION Biochemical compounds and signaling molecules act as direct and indirect defenses against maize pests of different guilds and crucial for natural enemies' interactions. Maize (Zea mays L.) is an important multipurpose cereal crop that contributes to global feed and food demands and is persistently under the attack of several pests of different feeding guilds. However, concerns over the drawbacks of extensive pesticide use in natural ecosystems, including health hazards and the need for cost-effective pest control strategies, are growing. Wide opportunities are available to harness native plant resistance and natural enemies for insect pest management. In this context, it is critical to understand the biochemical basis of maize genotype resistance to insects from various feeding guilds as well as their inter-guild interactions. The critical role of various herbivore-induced plant volatiles (HIPVs) in mediating tritrophic interactions between maize plants, insect pests, and their natural enemies should be considered when developing strategies for pest management. This review synthesizes the important maize defense systems against different feeding guild pests, shedding light on recent progress and insights into the long-recognized maize defense compounds. In addition to the tritrophic interactions facilitated by HIPVs in the maize ecosystem, there has also been a focus on examining the impacts of inter-guild interactions resulting from damage caused by pests from varying feeding guilds on indirect defense systems mediated by maize plants.
Collapse
Affiliation(s)
- Feby Atee
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Srinivasan Thulasy
- Department of Millets, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ravikesavan Rajasekaran
- Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Senthil Natesan
- Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
2
|
Sau AK, Dhillon MK, Tanwar AK. Diapause-induced shift in the content of major carbohydrates in Chilo partellus (Swinhoe). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:193-202. [PMID: 38149458 DOI: 10.1002/jez.2774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Although several aspects like diapause determining factors, population structure, reproductive physiology, and genetics of diapause have been investigated, there is no clarity on carbohydrate energetics during larval diapause in Chilo partellus (Swinhoe). Present studies revealed significant variation between the nondiapausing and diapausing C. partellus for total carbohydrates, glycogen, sorbitol, and trehalose contents in different body parts, life stages, and for body parts × life stages interaction. Total carbohydrate content started declining, while sorbitol and trehalose increased in all the body parts as the C. partellus larvae progressed from prediapausing to diapausing state. However, glycogen content spiked in all the body parts at prediapausing stage, which then declined during diapause. Among the body parts, total carbohydrate content was significantly greater in the hemolymph as compared to other body parts of both larvae and pupae of C. partellus. Glycogen content was significantly greater in the larval fat bodies and pupal hemolymph as compared to their other body parts. In diapausing larvae, sorbitol and trehalose were greater in the integument than in other body parts. Furthermore, there was spike in trehalose and decrease in sorbitol in all the body parts of pupae from diapausing than those from nondiapausing larvae. These findings suggest that the diapause alterate and/or fluctuate major carbohydrates in different body parts of both larvae and pupae of C. partellus. This information will be helpful in better understanding the diapause energetics and overwintering metabolic cryoprotection in insects.
Collapse
Affiliation(s)
- Ashok K Sau
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh K Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditya K Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Improved Captures of the Invasive Brown Marmorated Stink Bug, Halyomorpha halys, Using a Novel Multimodal Trap. INSECTS 2022; 13:insects13060527. [PMID: 35735864 PMCID: PMC9224681 DOI: 10.3390/insects13060527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Pest monitoring using traps is a key component of integrated pest management. For several insects, trapping is achieved using visual or olfactory stimuli. Although the combination of both is supposed to provide higher efficacy, this has often been overlooked in trap design. Through laboratory bioassays and field experiments we evaluated the use of UV-A and visible light in combination with olfactory stimuli to improve trapping of the invasive brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). Our results may be useful for the improvement of monitoring strategies for early pest detection. Additionally, the higher efficacy of the multimodal traps would allow their use in attract-and-kill or push–pull strategies within integrated pest management. Abstract Capture strategies for the brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), are challenging. Here we developed and evaluated a multimodal trap which combines visual and olfactory stimuli. Visual stimuli consisted of LEDs emitting UV-A and visible light. Olfactory stimuli were comprised of the synthetic aggregation pheromone and odours from trapped H. halys individuals. Stink bug attraction at different wavelengths was evaluated in laboratory two-choice bioassays, and different prototypes of the trap were tested in 2021 in natural, agricultural, and urban settings. Traps with a combination of UV-A and blue or green visible wavelengths provided higher H. halys attraction (up to ~8-fold) compared to traditional sticky or small pyramidal traps. The concurrent presence of synthetic pheromone and LED had a synergistic effect on H. halys positive phototaxis. Further development and implementation of the multimodal trap is discussed for prospective use in attract-and-kill or push–pull strategies.
Collapse
|
4
|
Dhillon MK, Jaba J, Mishra P, Iquebal MA, Jaiswal S, Tanwar AK, Bharat N, Arora N, Mishra SP, Gogineni SP, Hasan F, Rai A, Kumar D, Sharma HC. Whole genome sequencing of spotted stem borer, Chilo partellus, reveals multiple genes encoding enzymes for detoxification of insecticides. Funct Integr Genomics 2022; 22:611-624. [PMID: 35426546 DOI: 10.1007/s10142-022-00852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022]
Abstract
Spotted stem borer, Chilo partellus, is the most important constraint for increasing the production and productivity of maize and sorghum, the two major coarse cereals in Asia and Africa. The levels of resistance to this pest in the cultivated germplasm are low to moderate, and hence, farmers have to use insecticides for effective control of this pest. However, there is no information on the detoxification mechanisms in C. partellus, which is one of the constraints for deployment of appropriate insecticides to control this pest. The ability to detoxify insecticides varies across insect populations, and hence, we sequenced different populations of C. partellus to identify and understand detoxification mechanisms to devise appropriate strategies for deployment of different insecticides for controlling this pest. Larval samples were sequenced from three different cohorts of C. partellus using the Illumina HiSeq 2500 platform. The data were subjected to identify putative genes that are involved in detoxification on insecticides in our cohort insect species. These studies resulted in identification of 64 cytochrome P450 genes (CYP450s), and 36 glutathione S-transferases genes (GSTs) encoding metabolic detoxification enzymes, primarily responsible for xenobiotic metabolism in insects. A total of 183 circadian genes with > 80% homolog and 11 olfactory receptor genes that mediate chemical cues were found in the C. partellus genome. Also, target receptors related to insecticide action, 4 acetylcholinesterase (AChE), 14 γ-aminobutyric acid (GABA), and 15 nicotinic acetylcholine (nAChR) receptors were detected. This is the first report of whole genome sequencing of C. partellus useful for understanding mode of action of different insecticides, and mechanisms of detoxification and designing target-specific insecticides to develop appropriate strategies to control C. partellus for sustainable crop production.
Collapse
Affiliation(s)
- Mukesh K Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Pallavi Mishra
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Aditya K Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nareshkumar Bharat
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Naveen Arora
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Suraj Prasad Mishra
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| | - Shyam Prasad Gogineni
- ICAR-Indian Institute of Millets Research, Rajendranagar, Hyderabad, 500030, Telangana, India
| | - Fazil Hasan
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502324, Telangana, India
| |
Collapse
|