1
|
Brembilla NC, El-Harane S, Durual S, Krause KH, Preynat-Seauve O. Adipose-Derived Stromal Cells Exposed to RGD Motifs Enter an Angiogenic Stage Regulating Endothelial Cells. Int J Mol Sci 2025; 26:867. [PMID: 39940638 PMCID: PMC11817220 DOI: 10.3390/ijms26030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 02/16/2025] Open
Abstract
Adipose-derived stromal cells (ASCs) possess significant regenerative potential, playing a key role in tissue repair and angiogenesis. During wound healing, ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs, which are crucial for mediating these functions. This study investigates how RGD exposure influences ASC behavior, with a focus on angiogenesis. To mimic the wound-healing environment, ASC were cultured in a porcine gelatin sponge, an RGD-exposing matrix. Transcriptomics revealed that ASC cultured in gelatin exhibited an upregulated expression of genes associated with inflammation, angiogenesis, and tissue repair compared to ASC in suspension. Pro-inflammatory and pro-angiogenic factors, including IL-1, IL-6, IL-8, and VEGF, were significantly elevated. Functional assays further demonstrated that ASC-conditioned media enhanced endothelial cell migration, tubulogenesis, and reduced endothelial permeability, all critical processes in angiogenesis. Notably, ASC-conditioned media also promoted vasculogenesis in human vascular organoids. The inhibition of ASC-RGD interactions using the cyclic peptide cilengitide reversed these effects, underscoring the essential role of RGD-integrin interactions in ASC-mediated angiogenesis. These findings suggest that gelatin sponges enhance ASC's regenerative and angiogenic properties via RGD-dependent mechanisms, offering promising therapeutic potential for tissue repair and vascular regeneration. Understanding how RGD modulates ASC behavior provides valuable insights into advancing cell-based regenerative therapies.
Collapse
Affiliation(s)
| | - Sanae El-Harane
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Stéphane Durual
- Laboratory of Biomaterials, Faculty of Dental Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Olivier Preynat-Seauve
- Hekestiss Plan-les-Ouates, 1228 Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
2
|
Yuan Z, Zhang Y, He X, Wang X, Wang X, Ren S, Su J, Shen J, Li X, Xiao Z. Engineering mesenchymal stem cells for premature ovarian failure: overcoming challenges and innovating therapeutic strategies. Theranostics 2024; 14:6487-6515. [PMID: 39479455 PMCID: PMC11519806 DOI: 10.7150/thno.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Premature ovarian failure (POF) is a leading cause of infertility in women, causing significant psychological and physical distress. Current therapeutic options are limited, necessitating the exploration of new treatments. Mesenchymal stem cells (MSCs), known for their remarkable homing and regenerative properties, have emerged as a promising intervention for POF. However, their clinical efficacy has been inconsistent. This paper aims to address these challenges by examining the cellular heterogeneity within MSC populations, which is crucial for identifying and selecting specific functional subpopulations for clinical applications. Understanding this heterogeneity can enhance therapeutic efficacy and ensure treatment stability. Additionally, this review comprehensively examines the literature on the effectiveness, safety, and ethical considerations of MSCs for ovarian regeneration, with a focus on preclinical and clinical trials. We also discuss potential strategies involving genetically and tissue-engineered MSCs. By integrating insights from these studies, we propose new directions for the design of targeted MSC treatments for POF and related disorders, potentially improving outcomes, addressing safety concerns, and expanding therapeutic options while ensuring ethical compliance.
Collapse
Affiliation(s)
- Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Sichuan Mianyang 621000, China
- Luzhou People's Hospital, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Wang R, Shu RR, Seldin L. Noncanonical functions of adhesion proteins in inflammation. Am J Physiol Cell Physiol 2024; 327:C505-C515. [PMID: 38981610 PMCID: PMC11427013 DOI: 10.1152/ajpcell.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cell adhesion proteins localize to epithelial and endothelial cell membranes to form junctional complexes between neighboring cells or between cells and the underlying basement membrane. The structural and functional integrities of these junctions are critical to establish cell polarity and maintain tissue barrier function, while also facilitating leukocyte migration and adhesion to sites of inflammation. In addition to their adhesive properties, however, junctional proteins can also serve important noncanonical functions in inflammatory signaling and transcriptional regulation. Intriguingly, recent work has unveiled novel roles for cell adhesion proteins as both signaling initiators and downstream targets during inflammation. In this review, we discuss both the traditional functions of junction proteins in cell adhesion and tissue barrier function as well as their noncanonical signaling roles that have been implicated in facilitating diverse inflammatory pathologies.
Collapse
Affiliation(s)
- Ruochong Wang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Raphael R Shu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| |
Collapse
|
4
|
Ngo U, Shi Y, Woodruff P, Shokat K, DeGrado W, Jo H, Sheppard D, Sundaram AB. IL-13 and IL-17A activate β1 integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to enhance force transmission in airway smooth muscle. Proc Natl Acad Sci U S A 2024; 121:e2401251121. [PMID: 39136993 PMCID: PMC11348015 DOI: 10.1073/pnas.2401251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of β1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the β1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide β1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of β1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in β1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant β1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.
Collapse
Affiliation(s)
- Uyen Ngo
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| | - Ying Shi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94143
| | - Prescott Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| | - Kevan Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA94143
- Howard Hughes Medical Institute, University of California, San Francisco, CA94143
| | - William DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Hyunil Jo
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94143
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Cardiovascular Research Institute, University of California, San Francisco, CA94143
| | - Aparna B. Sundaram
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, CA94143
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA94143
| |
Collapse
|
5
|
Ngo U, Shi Y, Woodruff P, Shokat K, DeGrado W, Jo H, Sheppard D, Sundaram AB. IL-13 and IL-17A Activate β1 Integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to Enhance Force Transmission in Airway Smooth Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592042. [PMID: 38746410 PMCID: PMC11092608 DOI: 10.1101/2024.05.01.592042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although G-protein coupled receptor-mediated integrin activation has been extensively studied in non-adherent migratory cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent stationary cells such as airway smooth muscle. Here we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families respectively, to enhance adhesion of muscle to the matrix. These cytokines also induce activation of β1 integrins as detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is significantly increased in the smooth muscle of patients with asthma compared to healthy controls, suggesting a disease-relevant role for aberrant integrin activation. Indeed, we find integrin activation induced by a β1 activating antibody, the divalent cation manganese, or the synthetic peptide β1-CHAMP, dramatically enhances force transmission in collagen gels, mouse tracheal rings, and human bronchial rings even in the absence of cytokines. We further demonstrate that cytokine-induced activation of β1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 resulting in β1 integrin activation. Taken together, these data identify a previously unknown pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant β1 integrin activation in adherent smooth muscle and help explain the exaggerated force transmission that characterizes chronic airways diseases such as asthma.
Collapse
Affiliation(s)
- Uyen Ngo
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
| | - Ying Shi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Prescott Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
| | - Kevan Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| | - William DeGrado
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Hyunil Jo
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Aparna B. Sundaram
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, California, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Ren Y, Liu J, Xu H, Wang S, Li S, Xiang M, Chen S. Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix. Stem Cell Res Ther 2022; 13:389. [PMID: 35908001 PMCID: PMC9338467 DOI: 10.1186/s13287-022-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSCs) have the potential to promote wound healing; however, their adhesion to the extracellular matrix (ECM) might decrease iPSC migration, thereby limiting their therapeutic potential. Integrin β1 (Itgb1) is the major integrin subunit that mediates iPSC-ECM adhesion, suggesting that knocking out Itgb1 might be an effective method for enhancing the therapeutic efficacy of iPSCs. Methods We knocked out Itgb1 in mouse iPSCs and evaluated its effects on the therapeutic potential of topically applied iPSCs, as well as their underlying in vivo and in vitro mechanisms. Results The Itgb1-knockout (Itgb1-KO) did not change iPSC pluripotency, function, or survival in the absence of embedding in an ECM gel but did accelerate wound healing, angiogenesis, blood perfusion, and survival in skin-wound lesions. However, embedding in an ECM gel inhibited the in vivo effects of wild-type iPSCs but not those of Itgb1-knockout iPSCs. Additionally, in vitro results showed that Itgb1-knockout decreased iPSC-ECM adhesion while increasing ECM-crossing migration. Moreover, ECM coating on the culture surface did not change cell survival, regardless of Itgb1 status; however, the in vivo and in vitro functions of both Itgb1-knockout and wild-type iPSCs were not affected by the presence of agarose gel, which does not contain integrin-binding sites. Knockout of Integrin α4 (Itga4) did not change the above-mentioned cellular and therapeutic functions of iPSCs. Conclusions Itgb1-knockout increased iPSCs migration and the wound-healing-promoting effect of topically applied iPSCs. These findings suggest the inhibition of Itgb1 expression is a possible strategy for increasing the efficacy of iPSC therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03085-7.
Collapse
Affiliation(s)
- Yansong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jinbo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huijun Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shirui Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|