1
|
Terada K, Furumoto C, Nishimura T, Hirayama A, Takami Y. The development of extremely large male genitalia under spatial limitation. Evol Dev 2024; 26:e12488. [PMID: 38927009 DOI: 10.1111/ede.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Extensive research in evolutionary biology has focused on the exaggeration of sexual traits; however, the developmental basis of exaggerated sexual traits has only been determined in a few cases. The evolution of exaggerated sexual traits may involve the relaxation of constraints or developmental processes mitigating constraints. Ground beetles in the subgenus Ohomopterus (genus Carabus) have species-specific genitalia that show coevolutionary divergence between the sexes. Here, we examined the morphogenesis of the remarkably enlarged male and female genitalia of Carabus uenoi by X-ray microcomputed tomography. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar to those in closely related species with standard genital sizes. Higher growth rates contributed to the exaggeration of both the male and female genital parts of C. uenoi, possibly related to a gene network commonly upregulated in both sexes. Additionally, the length of the copulatory piece (CP), the enlarged male genital part stored in the aedeagus (AD), reached close to that of the AD at the later developmental stages and thereafter decelerated to grow in parallel with the AD, suggesting a structural constraint on the CP by the outer AD. Then, unlike related species, the lengths of the CP and AD increased at eclosion, suggesting a mechanism leading to further elongation of the male genitalia. These observations suggest that a developmental process allows continuous growth of the male genitalia even under the spatial limitation. These results revealed the spatio-temporal dynamics of the development of exaggerated genital structures under structural constraints.
Collapse
Affiliation(s)
- Karen Terada
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Chinami Furumoto
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Taira Nishimura
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | | | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
2
|
Meunier J. The Biology and Social Life of Earwigs (Dermaptera). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:259-276. [PMID: 37722682 DOI: 10.1146/annurev-ento-013023-015632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Earwigs are often known for the forceps-like appendage at the end of their abdomen, urban legends about them crawling into human ears, and their roles as pest and biological control agents. However, they are much less known for their social life. This is surprising, as many of the 1,900 species of earwigs show social behaviors toward eggs, juveniles, and adults. These behaviors typically occur during family and group living, which may be obligatory or facultative, last up to several months, and involve only a few to several hundred related or unrelated individuals. Moreover, many individuals can alternate between solitary and group living during their life cycle, an ability that probably prevailed during the emergence of social life. In this review, I detail the diversity of group living and social behavior in earwigs and show how further developing this knowledge in Dermaptera can improve our general understanding of the early evolution of social life in insects.
Collapse
Affiliation(s)
- Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France;
| |
Collapse
|
3
|
Izquierdo MA, Dederichs TM, Cargnelutti F, Michalik P. Copulatory behaviour and genital mechanics suggest sperm allocation by a non-intromittent sclerite in a pholcid spider. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230263. [PMID: 37266042 PMCID: PMC10230183 DOI: 10.1098/rsos.230263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
The male genitalia of pholcid spiders, which is one of the most species-rich spider families, are characterized by a procursus, which is a morphologically diverse projection of the copulatory organ. It has been shown that the procursus interacts with the female genitalia during copulation. Here, we investigate the function of the procursus in Gertschiola neuquena, a species belonging to the early branched and understudied subfamily Ninetinae, using behavioural and morphological data. Although many aspects of the copulatory behaviour of G. neuquena follow the general pattern described for the family, males use only one pedipalp during each copulation. Based on our micro-CT analysis of cryofixed mating pairs using virgin females, we can show that the long and filiform procursus is inserted deeply into the unpaired convoluted female spermatheca, and the intromittent sclerite, the embolus, is rather short and stout only reaching the most distal part of the female sperm storage organ. Histological data revealed that sperm are present in the most proximal part of the spermatheca, suggesting that the procursus is used to allocate sperm deeply into the female sperm storage organ. This represents the first case of a replacement of the sperm allocation function of the intromittent sclerite in spiders.
Collapse
Affiliation(s)
- M. A. Izquierdo
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, 5000, Argentina
| | - T. M. Dederichs
- Universität Greifswald, Zoologisches Institut und Museum, Loitzer Straße 26, 17489 Greifswald, Germany
| | - F. Cargnelutti
- Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, 5000, Argentina
| | - P. Michalik
- Universität Greifswald, Zoologisches Institut und Museum, Loitzer Straße 26, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Yokonishi T. [Reconstruction of spermatogonial niche for male fertility preservation]. Nihon Yakurigaku Zasshi 2022; 157:168-171. [PMID: 35491111 DOI: 10.1254/fpj.21106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infertility is one of the late side effects of cancer treatment. Expansion of anti-cancer treatment allow patients to have more life time, however infertility is becoming a matter damaging QOL during the young cancer survivors. The passive strategy such as avoiding the gonad-toxic drug or decreasing the total volume of them and shielding the gonads against cancer therapy has been conducted. To preserve the fertility of young female, ovary tissue cryopreservation is becoming a standard over the world after the success of offspring from cryopreserved ovary tissue autograft was reported. Sperm preservation method is established for the male fertility preservation method, however this is only applicable for sexually matured male patients. For the sake of preserving fertility of sexually immature male patients, many trials using cryopreserved testis tissues or testicular cells have been undergone. Recently, in vitro gametogenesis from stem cell of the human and the mouse to primordial germ cell like cell has been achieved. Here the previous challenges and the latest reports for obtaining functional sperm from immature testis and the reconstruction of spermatogonial niche as a potential approach for preserving fertility procedure are described.
Collapse
|
5
|
Kamimura Y, Matsumura Y, Yang CCS, Gorb SN. Random or handedness? Use of laterally paired penises in Nala earwigs (Insecta: Dermaptera: Labiduridae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Animals can show bias in their use of laterally paired organs that do not have any conspicuous anatomical differentiation between the right and left organs. Like right handedness in humans, males of the giant earwig Labidura riparia (Labiduridae: Labidurinae) preferentially (~90%) use the right one of their laterally paired penises for copulation. To elucidate the evolutionary origin of this lateralization, patterns of penis use were examined for the related species of the genus Nala (Labiduridae: Nalinae). In multiple populations and broods of both Nala lividipes and Nala nepalensis, males that were ready to use the right or left penis were equally frequent, providing a striking contrast to Labidura. Surgical ablation of one of the two penises revealed that both penises are functionally competent in N. lividipes. Nevertheless, each male almost consistently used only one of the paired penises, either the right or the left one. Changes in penis use were estimated to occur only once per 64–143 days per male. The present study is the first report of individual-level lateralization for animal genitalia that do not show any conspicuous anatomical differentiation between the right and left organs. Possible advantages of lateralization are discussed in relationship to co-evolution of the genitalia between the sexes.
Collapse
Affiliation(s)
| | - Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| | | | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| |
Collapse
|
6
|
Matsumura Y, Kovalev A, Gorb SN. Mechanical properties of a female reproductive tract of a beetle and implications for penile penetration. Proc Biol Sci 2021; 288:20211125. [PMID: 34229492 DOI: 10.1098/rspb.2021.1125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Coevolution of male and female genitalia is widespread in animals. Nevertheless, few studies have examined the mechanics of genital interactions during mating. We characterized the mechanical properties of the elongated female genitalia, the spermathecal duct, of the small cassidine beetle, Cassida rubiginosa. The data were compared with the mechanical properties of the elongated male genitalia, the flagellum. We analysed the material distributions of the spermathecal duct using a microscopy technique, established a tensile test setup under a light microscope and conducted tensile tests. Diameter and tensile stiffness gradients were present along the spermathecal duct, but its Young's modulus and material distribution were more or less homogeneous. The results confirmed the hypothesis based on numerical simulations that the spermathecal duct is more rigid than the flagellum. In the study species, the penile penetration force is simply applied to the base of the hyper-elongated flagellum and conveyed along the flagellum to its tip. Considering this simple penetration mechanism, the relatively low flexibility of the spermathecal duct, compared to the flagellum, is likely to be essential for effective penetration of the flagellum.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|