1
|
Li T, Yang Z, Ang Y, Zhao Y, Zhang Y, Liu Z, Sun H, Chang Y, Du M, Cheng X, Sun J, Liu E. Genome-wide association study identifies elite alleles of FLA2 and FLA9 controlling flag leaf angle in rice. BMC Genomics 2025; 26:280. [PMID: 40119348 PMCID: PMC11927237 DOI: 10.1186/s12864-025-11487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND In hybrid rice seed production, rice varieties with a small flag leaf angle (FLA) experience obstacles to cross-pollination at the early heading stage, and farmers usually need to remove flag leaves to achieve artificial pollination. Therefore, the cultivation of rice varieties with large FLAs can not only save a substantial amount of labour in the leaf-cutting process during artificial pollination but also accelerate the mechanization of hybrid rice seed production. RESULTS In this study, 431 rice accessions were included in a genome-wide association study (GWAS) to identify quantitative trait loci (QTLs) and the superior haplotypes for rice FLA in 2022 and 2023. The aim of the study was to identify new QTLs and provide germplasm resources for the genetic improvement of rice FLA. The population exhibited rich phenotypic variation in FLA in both years. The FLA GWAS was performed with more than 3 million single-nucleotide polymorphisms (SNPs), and eight QTLs associated with FLA were detected; of these, six QTLs located on rice chromosomes 1, 2, 8 and 9 were novel and detected in both years. In addition, these QTLs were analysed by haplotype analysis and functional annotation, and FLA2 and FLA9, which encode xyloglucan fucosyltransferase and cytokinin-O-glucosyltransferase 2, respectively, were identified as candidate genes for FLA regulation in rice. Quantitative real-time polymerase chain reaction (qRT‒PCR) results validated FLA2 and FLA9 as candidate genes. The results of this study showed that the elite alleles of FLA2 and FLA9 can increase FLA in rice. Excellent parents for FLA improvement were predicted through pyramiding breeding. CONCLUSIONS A total of six new QTLs and two candidate genes (FLA2 and FLA9) were identified by a GWAS of 431 rice accessions over two years. The elite alleles and excellent parents predicted in our study can provide important information for the functional analysis of rice FLA-related genes and improvement through pyramiding breeding.
Collapse
Affiliation(s)
- Tianhu Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Zhen Yang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yang Ang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yingying Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yanan Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Zhengbo Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Hao Sun
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Yinping Chang
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Mingyu Du
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Xianping Cheng
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Jinghan Sun
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China
| | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230000, China.
| |
Collapse
|
2
|
Zhao J, Wang J, Liu J, Zhang P, Kudoyarova G, Liu CJ, Zhang K. Spatially distributed cytokinins: Metabolism, signaling, and transport. PLANT COMMUNICATIONS 2024; 5:100936. [PMID: 38689499 PMCID: PMC11287186 DOI: 10.1016/j.xplc.2024.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase. Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins. The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually Be Exported transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of the spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jingqi Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jie Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, RAS, Prospekt Oktyabrya 69, Ufa 450054, Russia
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
3
|
Schilling F, Schumacher C, Köhl K, Sprenger H, Kopka J, Peters R, Haas M, Zuther E, Horn R. Whole-genome sequencing of tetraploid potato varieties reveals different strategies for drought tolerance. Sci Rep 2024; 14:5476. [PMID: 38443466 PMCID: PMC10914802 DOI: 10.1038/s41598-024-55669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Climate changes leading to increasingly longer seasonal drought periods in large parts of the world increase the necessity for breeding drought-tolerant crops. Cultivated potato (Solanum tuberosum), the third most important vegetable crop worldwide, is regarded as drought-sensitive due to its shallow root architecture. Two German tetraploid potato cultivars differing in drought tolerance and their F1-progeny were evaluated under various drought scenarios. Bulked segregant analyses were combined with whole-genome sequencing (BSA-Seq) using contrasting bulks of drought-tolerant and drought-sensitive F1-clones. Applying QTLseqr, 15 QTLs comprising 588,983 single nucleotide polymorphisms (SNPs) in 2325 genes associated with drought stress tolerance were identified. SeqSNP analyses in an association panel of 34 mostly starch potato varieties using 1-8 SNPs for each of 188 selected genes narrowed the number of candidate genes down to 10. In addition, ent-kaurene synthase B was the only gene present under QTL 10. Eight of the identified genes (StABP1, StBRI1, StKS, StLEA, StPKSP1, StPKSP2, StYAB5, and StZOG1) address plant development, the other three genes (StFATA, StHGD and StSYP) contribute to plant protection under drought stress. Allelic variation in these genes might be explored in future breeding for drought-tolerant potato varieties.
Collapse
Affiliation(s)
- Florian Schilling
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Christina Schumacher
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rolf Peters
- Landwirtschaftskammer Niedersachsen, Dethlingen 14, 29633, Munster, Germany
- PotatoConsult UG, Hiddinger Straße 33, 27374, Visselhövede, Germany
| | - Manuela Haas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Ministry of Agriculture, Environment and Climate Protection, Henning-Von-Tresckow-Straße 2-13, 14467, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center of Artificial Intelligence in Public Health Research, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
4
|
Li Z, Wang J, Wang J. Identification of a Comprehensive Gene Co-Expression Network Associated with Autotetraploid Potato ( Solanum tuberosum L.) Development Using WGCNA Analysis. Genes (Basel) 2023; 14:1162. [PMID: 37372342 DOI: 10.3390/genes14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The formation and development of potato tissues and organs is a complex process regulated by a variety of genes and environmental factors. The regulatory mechanisms underlying the growth and development are still unclear. In this work, we aimed to explore the changes in gene expression patterns and genetic characteristics of potato tissues throughout different developmental stages. To achieve this, we used autotetraploid potato JC14 as an experimental subject to analyze the transcriptome of the root, stem, and leaf at the seedling, tuber formation, and tuber expansion stages. The results revealed thousands of differentially expressed genes, predominantly involved in defense response and carbohydrate metabolism according to KEGG pathway enrichment analysis. Weighted gene co-expression network analysis (WGCNA) revealed a total of 12 co-expressed gene modules, with 4 modules showing the highest correlation with potato stem development. By calculating the connectivity of genes within the module, hub genes were identified, and functional annotations were subsequently performed. A total of 40 hub genes from the four modules were identified, and their functions were found to be related to carbohydrate metabolism, defense response, and transcription factors. These findings provide important insights for further understanding of the molecular regulation and genetic mechanisms involved in potato tissue development.
Collapse
Affiliation(s)
- Zhimin Li
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juan Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayin Wang
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
5
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
6
|
Eliášová K, Konrádová H, Dobrev PI, Motyka V, Lomenech AM, Fischerová L, Lelu-Walter MA, Vondráková Z, Teyssier C. Desiccation as a Post-maturation Treatment Helps Complete Maturation of Norway Spruce Somatic Embryos: Carbohydrates, Phytohormones and Proteomic Status. FRONTIERS IN PLANT SCIENCE 2022; 13:823617. [PMID: 35237290 PMCID: PMC8882965 DOI: 10.3389/fpls.2022.823617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/04/2022] [Indexed: 06/12/2023]
Abstract
Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase. Multivariate comparison of mature somatic embryos with mature desiccated somatic embryos and/or zygotic embryos provided new insights into the processes involved during the desiccation step of somatic embryogenesis. Desiccated embryos were characterized by reduced levels of starch and soluble carbohydrates but elevated levels of raffinose family oligosaccharides. Desiccation treatment decreased the content of abscisic acid and its derivatives but increased total auxins and cytokinins. The content of phytohormones in dry zygotic embryos was lower than in somatic embryos, but their profile was mostly analogous, apart from differences in cytokinin profiles. The biological processes "Acquisition of desiccation tolerance", "Response to stimulus", "Response to stress" and "Stored energy" were activated in both the desiccated somatic embryos and zygotic embryos when compared to the proteome of mature somatic embryos before desiccation. Based on the specific biochemical changes of important constituents (abscisic acid, raffinose, stachyose, LEA proteins and cruciferins) induced by the desiccation treatment and observed similarities between somatic and zygotic P. abies embryos, we concluded that the somatic embryos approximated to a state of desiccation tolerance. This physiological change could be responsible for the reorientation of Norway spruce somatic embryos toward a stage suitable for germination.
Collapse
Affiliation(s)
- Kateřina Eliášová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Konrádová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petre I. Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Lucie Fischerová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | | - Zuzana Vondráková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|