1
|
Kumar NN, Ahmad Dit Al Hakim S, Grygiel-Górniak B. Antinuclear Antibodies in Non-Rheumatic Diseases. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0004. [PMID: 39827475 DOI: 10.2478/aite-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025]
Abstract
Antinuclear antibodies (ANAs) are critical immunological markers commonly associated with various connective tissue diseases (CTDs). However, these autoantibodies are also detectable in healthy individuals, patients with non-rheumatic autoimmune diseases, those with viral infections, and subjects using specific medications (such as procainamide, hydralazine, and minocycline) that can lead to drug-induced ANA elevation. The standard method for ANA detection is indirect immunofluorescence, a process that requires precision and thoroughness as it assesses both titer and fluorescence patterns. Additionally, immunoblotting and enzyme-linked immunosorbent assay (ELISA) are recommended to identify specific ANAs precisely, highlighting the importance of precision in ANA detection. This review explores the advantages and limitations of current ANA detection methods. It also describes the clinical implications of ANA presence in non-rheumatic diseases, including autoimmune disorders, infectious conditions, non-autoimmune and non-infectious diseases, and autoimmune cutaneous diseases. The presence of elevated ANA titers in these contexts can complicate clinical decision-making, as the diagnostic value of ANA testing alone is limited in non-rheumatic conditions. However, despite these limitations, ANA remains a key component in diagnosing and prognosis systemic CTDs, as it can indicate disease activity, severity, and response to treatment, which is of utmost importance in rheumatology and internal medicine. This paper provides a comprehensive review of the role of ANA in non-rheumatic diseases. It focuses on ANA diagnostic and prognostic significance and offers valuable insights for clinical practice.
Collapse
Affiliation(s)
- Nikita Niranjan Kumar
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznañ University of Medical Sciences, Poznañ, Poland
| | - Samir Ahmad Dit Al Hakim
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznañ University of Medical Sciences, Poznañ, Poland
| | - Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznañ University of Medical Sciences, Poznañ, Poland
| |
Collapse
|
2
|
Banday AZ, Nisar R, Patra PK, Ahmad I, Gupta A. Basic Investigations in Pediatric Rheumatology. Indian J Pediatr 2024; 91:927-933. [PMID: 37676468 DOI: 10.1007/s12098-023-04821-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
The spectrum of pediatric rheumatological disorders is diverse and they are important differential diagnoses in a variety of clinical scenarios. Basic investigations not only provide supporting evidence for the diagnosis of a rheumatological illness but also help in exclusion of other diseases as well as for monitoring the activity of disease. Among these, complete blood count, biochemical assays including tests for inflammatory response, urine analysis, and various autoantibodies are often used. In addition, depending on the clinical features, imaging and tissue biopsies are used to confirm the diagnosis.
Collapse
Affiliation(s)
- Aaqib Zaffar Banday
- Department of Pediatrics, Government Medical College (GMC), Srinagar, Jammu and Kashmir, 190018, India.
| | - Rahila Nisar
- Department of Microbiology, Government Medical College (GMC), Baramulla, India
| | - Pratap Kumar Patra
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Imtiyaz Ahmad
- Department of Pediatrics, Government Medical College (GMC), Srinagar, Jammu and Kashmir, 190018, India
| | - Anju Gupta
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
3
|
Lei R, Arain H, Wang D, Arunachalam J, Saxena R, Mohan C. Duplex Vertical-Flow Rapid Tests for Point-of-Care Detection of Anti-dsDNA and Anti-Nuclear Autoantibodies. BIOSENSORS 2024; 14:98. [PMID: 38392017 PMCID: PMC10887294 DOI: 10.3390/bios14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
The goal of this study is to develop a rapid diagnostic test for rheumatic disease and systemic lupus erythematosus (SLE) screening. A novel rapid vertical flow assay (VFA) was engineered and used to assay anti-nuclear (ANA) and anti-dsDNA (αDNA) autoantibodies from systemic lupus erythematosus (SLE) patients and healthy controls (HCs). Observer scores and absolute signal intensities from the VFA were validated via ELISA. The rapid point-of-care VFA test that was engineered demonstrated a limit of detection of 0.5 IU/mL for ANA and αDNA autoantibodies in human plasma with an inter-operator CV of 19% for ANA and 12% for αDNA. Storage stability was verified over a three-month period. When testing anti-dsDNA and ANA levels in SLE and HC serum samples, the duplex VFA revealed 95% sensitivity, 72% specificity and an 84% ROC AUC value in discriminating disease groups, comparable to the gold standard, ELISA. The rapid αDNA/ANA duplex VFA can potentially be used in primary care clinics for evaluating patients or at-risk subjects for rheumatic diseases and for planning follow-up testing. Given its low cost, ease, and rapid turnaround, it can also be used to assess SLE prevalence estimates.
Collapse
Affiliation(s)
- Rongwei Lei
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| | - Hufsa Arain
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| | - David Wang
- John Sealy School of Medicine, UT Medical Branch, Galveston, TX 77555, USA;
| | - Janani Arunachalam
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| | - Ramesh Saxena
- UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, USA; (R.L.); (H.A.); (J.A.)
| |
Collapse
|
4
|
Gonzalez-Castro RA, Carnevale EM. Phospholipase C Zeta 1 (PLCZ1): The Function and Potential for Fertility Assessment and In Vitro Embryo Production in Cattle and Horses. Vet Sci 2023; 10:698. [PMID: 38133249 PMCID: PMC10747197 DOI: 10.3390/vetsci10120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Phospholipase C Zeta 1 (PLCZ1) is considered a major sperm-borne oocyte activation factor. After gamete fusion, PLCZ1 triggers calcium oscillations in the oocyte, resulting in oocyte activation. In assisted fertilization, oocyte activation failure is a major cause of low fertility. Most cases of oocyte activation failures in humans related to male infertility are associated with gene mutations and/or altered PLCZ1. Consequently, PLCZ1 evaluation could be an effective diagnostic marker and predictor of sperm fertilizing potential for in vivo and in vitro embryo production. The characterization of PLCZ1 has been principally investigated in men and mice, with less known about the PLCZ1 impact on assisted reproduction in other species, such as cattle and horses. In horses, sperm PLCZ1 varies among stallions, and sperm populations with high PLCZ1 are associated with cleavage after intracytoplasmic sperm injection (ICSI). In contrast, bull sperm is less able to initiate calcium oscillations and undergo nuclear remodeling, resulting in poor cleavage after ICSI. Advantageously, injections of PLCZ1 are able to rescue oocyte failure in mouse oocytes after ICSI, promoting full development and birth. However, further research is needed to optimize PLCZ1 diagnostic tests for consistent association with fertility and to determine whether PLCZ1 as an oocyte-activating treatment is a physiological, efficient, and safe method for improving assisted fertilization in cattle and horses.
Collapse
Affiliation(s)
| | - Elaine M. Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
5
|
Anti-dsDNA Is Associated with Favorable Prognosis in Myasthenia Gravis: A Retrospective Study. Acta Neurol Scand 2023. [DOI: 10.1155/2023/8939083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Objectives. To investigate the presence of serum antinuclear antibody (ANA) and anti-double-stranded DNA antibody (anti-dsDNA) in patients with myasthenia gravis (MG) and analyze the clinical characteristics and prognostic factors associated with MG. Methods. We retrospectively enrolled 363 patients with MG and analyzed the clinical characteristics and follow-up data between patients positive and negative for ANA and anti-dsDNA. We defined a Myasthenia Gravis Activities of Daily Living (MG-ADL) reduction as a main prognosis predictor and used logistic regression to determine independent factors associated with prognosis. We built a nomogram to predict prognosis and evaluate the internal validity of the model. Results. Ninety-eight (27.0%) patients were positive for ANA, and 51 (14.0%) were positive for anti-dsDNA. Patients positive for ANA and anti-dsDNA antibodies tended to be female and positive for acetylcholine receptor antibody (AChR-Ab). The rate of thymoma was higher in anti-dsDNA-positive patients with MG (p-dsDNA-MG) than in patients negative for anti-dsDNA (49.0% vs. 26.0%,
), and p-dsDNA-MG was associated with reduced MG-ADL score. Regression analysis showed that except for age of onset (
,
,
), anti-dsDNA (
,
,
), ptosis (
,
,
), and eye movement disorder (
,
,
) were independent predictive factors of a favorable prognosis of MG. These predictors were used to generate a nomogram with an excellent predictive value. Conclusions. Being female and the presence of AChR-Ab were features of ANA- or anti-dsDNA-positive MG. The presence of anti-dsDNA was associated with a favorable prognosis of MG.
Collapse
|
6
|
Hayrapetyan H, Tran T, Tellez-Corrales E, Madiraju C. Enzyme-Linked Immunosorbent Assay: Types and Applications. Methods Mol Biol 2023; 2612:1-17. [PMID: 36795355 DOI: 10.1007/978-1-0716-2903-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is an immunological assay widely used in basic science research, clinical application studies, and diagnostics. The ELISA technique relies on the interaction between the antigen (i.e., the target protein) versus the primary antibody against the antigen of interest. The presence of the antigen is confirmed through the enzyme-linked antibody catalysis of the added substrate, the products of which are either qualitatively detected by visual inspection or quantitatively using readouts from either a luminometer or a spectrophotometer. ELISA techniques are broadly classified into direct, indirect, sandwich, and competitive ELISA-all of which vary based on the antigens, antibodies, substrates, and experimental conditions. Direct ELISA relies on the binding of the enzyme-conjugated primary antibodies to the antigen-coated plates. Indirect ELISA introduces enzyme-linked secondary antibodies specific to the primary antibodies bound to the antigen-coated plates. Competitive ELISA involves a competition between the sample antigen and the plate-coated antigen for the primary antibody, followed by the binding of enzyme-linked secondary antibodies. Sandwich ELISA technique includes a sample antigen introduced to the antibody-precoated plate, followed by sequential binding of detection and enzyme-linked secondary antibodies to the recognition sites on the antigen. This review describes ELISA methodology, the types of ELISA, their advantages and disadvantages, and a listing of some multifaceted applications both in clinical and research settings, including screening for drug use, pregnancy testing, diagnosing disease, detecting biomarkers, blood typing, and detecting SARS-CoV-2 that causes coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Hovhannes Hayrapetyan
- Marshall B. Ketchum University, Fullerton, CA, USA.,Wayne State University, School of Medicine, Detroit, MI, USA
| | - Thao Tran
- Marshall B. Ketchum University, Fullerton, CA, USA
| | | | | |
Collapse
|
7
|
Kazieva LS, Farafonova TE, Zgoda VG. [Antibody proteomics]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:5-18. [PMID: 36857423 DOI: 10.18097/pbmc20236901005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Antibodies represent an essential component of humoral immunity; therefore their study is important for molecular biology and medicine. The unique property of antibodies to specifically recognize and bind a certain molecular target (an antigen) determines their widespread application in treatment and diagnostics of diseases, as well as in laboratory and biotechnological practices. High specificity and affinity of antibodies is determined by the presence of primary structure variable regions, which are not encoded in the human genome and are unique for each antibody-producing B cell clone. Hence, there is little or no information about amino acid sequences of the variable regions in the databases. This differs identification of antibody primary structure from most of the proteomic studies because it requires either B cell genome sequencing or de novo amino acid sequencing of the antibody. The present review demonstrates some examples of proteomic and proteogenomic approaches and the methodological arsenal that proteomics can offer for studying antibodies, in particular, for identification of primary structure, evaluation of posttranslational modifications and application of bioinformatics tools for their decoding.
Collapse
Affiliation(s)
- L Sh Kazieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Höppner J, Tabeling C, Casteleyn V, Kedor C, Windisch W, Burmester GR, Huscher D, Siegert E. Comprehensive autoantibody profiles in systemic sclerosis: Clinical cluster analysis. Front Immunol 2023; 13:1045523. [PMID: 36685532 PMCID: PMC9846214 DOI: 10.3389/fimmu.2022.1045523] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Background Systemic sclerosis (SSc) belongs to the group of connective tissue diseases and is associated with the occurrence of disease-specific autoantibodies. Although it is still controversial whether these antibodies contribute to pathogenesis, there are new insights into the development of these specific antibodies and their possible pathophysiological properties. Interestingly, they are associated with specific clinical manifestations, but for some rarer antibodies this association is not fully clarified. The aim of this study is a comprehensive analysis of the serum autoantibody status in patients with SSc followed by correlation analyses of autoantibodies with the clinical course of the disease. Methods Serum from SSc patients was analyzed using a line blot (EUROLINE, EUROIMMUN AG) for SSc-related autoantibodies. Autoantibodies to centromere, Topo-1, antimitochondrial antibodies (AMA) M2 subunit, angiotensin II type 1 receptors (AT1R) and endothelin-1 type-A-receptors (ETAR) were also determined by ELISA. We formed immunological clusters and used principal components analysis (PCA) to assign specific clinical characteristics to these clusters. Results A total of 372 SSc patients were included. 95.3% of the patients were antinuclear antibody positive and in 333 patients at least one SSc specific antibody could be detected. Four immunological clusters could be found by PCA. Centromere, Topo-1 and RP3 all formed own clusters, which are associated with distinct clinical phenotypes. We found that patients with an inverted phenotype, such as limited cutaneous SSc patients within the Topo-1 cluster show an increased risk for interstital lung disease compared to ACA positive patients. Anti-AT1R and anti-ETAR autoantibodies were measured in 176 SSc patients; no association with SSc disease manifestation was found. SSc patients with AMA-M2 antibodies showed an increased risk of cardiovascular events. Conclusion In our in large cluster analysis, which included an extended autoantibody profile, we were able to show that serologic status of SSc patients provides important clues to disease manifestation, co-morbidities and complications. Line blot was a reliable technique to detect autoantibodies in SSc and detected rarer autoantibodies in 42% of our patients.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Pulmonology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Cologne, Germany
| | - Christoph Tabeling
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Casteleyn
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Kedor
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfram Windisch
- Department of Pulmonology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Cologne, Germany
| | - Gerd Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dörte Huscher
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Vílchez-Oya F, Balastegui Martin H, García-Martínez E, Corominas H. Not all autoantibodies are clinically relevant. Classic and novel autoantibodies in Sjögren’s syndrome: A critical review. Front Immunol 2022; 13:1003054. [PMID: 36325321 PMCID: PMC9619091 DOI: 10.3389/fimmu.2022.1003054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Sjögren’s syndrome (SjS) is a heterogeneous systemic disease. The abnormal responses to La/SSB and Ro/SSA of both B-cells and T-cells are implicated as well as others, in the destruction of the epithelium of the exocrine glands, whose tissue characteristically shows a peri-epithelial lymphocytic infiltration that can vary from sicca syndrome to systemic disease and lymphoma. Despite the appearance of new autoantibodies, anti-Ro/SSA is still the only autoantibody included in the American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) classification criteria and is used extensively as a traditional biomarker in clinical practice. The study and findings of new autoantibodies in SjS has risen in the previous decade, with a central role given to diagnosis and elucidating new aspects of SjS physiopathology, while raising the opportunity to establish clinical phenotypes with the goal of predicting long-term complications. In this paper, we critically review the classic and the novel autoantibodies in SjS, analyzing the methods employed for detection, the pathogenic role and the wide spectrum of clinical phenotypes.
Collapse
Affiliation(s)
- Francisco Vílchez-Oya
- Department of Anaesthesiology, Pain Medicine Section, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - E. García-Martínez
- Department of Immunology, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Hèctor Corominas
- Department of Rheumatology and Autoimmune Diseases, Hospital de la Santa Creu i Sant, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- *Correspondence: Hèctor Corominas,
| |
Collapse
|
10
|
Meng J, Yang G, Li S, Luo Y, Bai Y, Deng C, Song N, Li M, Zeng X, Hu C. The clinical value of indirect immunofluorescence for screening anti-rods and rings antibodies: A retrospective study of two centers in China. Front Immunol 2022; 13:1007257. [PMID: 36238277 PMCID: PMC9552219 DOI: 10.3389/fimmu.2022.1007257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To investigate the distribution and clinical significance of the rods and rings (RR) pattern in various diseases. Methods A total of 169,891 patients in Peking Union Medical College Hospital (PUMCH) and 29,458 patients in Inner Mongolia People’s Hospital (IMPH) from January 2018 to December 2020 were included, and the results of ANA (antinuclear antibodies) and special antibodies were analyzed retrospectively. Results The positive rates of ANA and RR patterns were 34.84%, 0.16% in PUMCH, and 44.73%, 0.23% in IMPH. Anti-RR antibodies mainly appear in adults (≥ 41 years), mostly of low or medium fluorescence titers. Isolated RR patterns were mostly presented (60.30% and 69.12%, respectively), and the RR pattern mixed with the speckled pattern was most commonly observed among patients having two or more patterns. The RR pattern existed in a variety of diseases including hepatitis C, AIDs, pulmonary diseases, nephropathy diseases, and even healthy people. The highest prevalence of the RR pattern was observed in hepatic diseases, such as hepatic dysfunction (0.79%), hepatic cirrhosis (1.05%), PBC (0.85%), and AIH (0.65%), etc. The positive rate of specific antibodies in RR pattern cases was 31.25%, and anti-Ro52 (27, 20.61%) was the most common target antibody. Conclusion The RR pattern had a low prevalence in ANAs test samples and varied in different nationalities and regions. Except for hepatitis C, it could be observed in AIDs, pulmonary diseases, nephropathy, other hepatic diseases, and even healthy people, but the positive rate was slightly higher in hepatic diseases. Its mechanism of action and clinical relevance still need clarification.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoxiang Yang
- Department of Clinical Laboratory, Inner Mongolia People’s Hospital, Hohhot, China
| | - Siting Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Yueming Luo
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine (TCM) (Affiliated Jiangmen TCM Hospital of Ji’nan University), Jiangmen, China
| | - Yina Bai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Ning Song
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Chaojun Hu, ; Xiaofeng Zeng,
| | - Chaojun Hu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Chaojun Hu, ; Xiaofeng Zeng,
| |
Collapse
|
11
|
Irure-Ventura J, López-Hoyos M. The Past, Present, and Future in Antinuclear Antibodies (ANA). Diagnostics (Basel) 2022; 12:647. [PMID: 35328200 PMCID: PMC8946865 DOI: 10.3390/diagnostics12030647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 12/21/2022] Open
Abstract
Autoantibodies are a hallmark of autoimmunity and, specifically, antinuclear antibodies (ANAs) are the most relevant autoantibodies present in systemic autoimmune rheumatic diseases (SARDs). Over the years, different methods from LE cell to HEp-2 indirect immunofluorescence (IIF), solid-phase assays (SPAs), and finally multianalyte technologies have been developed to study ANA-associated SARDs. All of them provide complementary information that is important to provide the most clinically valuable information. The identification of new biomarkers together with multianalyte platforms will help close the so-called "seronegative gap" and to correctly classify and diagnose patients with SARDs. Finally, artificial intelligence and machine learning is an area still to be exploited but in a next future will help to extract patterns within patient data, and exploit these patterns to predict patient outcomes for improved clinical management.
Collapse
Affiliation(s)
- Juan Irure-Ventura
- Immunology Department, University Hospital Marqués de Valdecilla, 39008 Santander, Spain;
- Autoimmunity and Transplantation Research Group, Research Institute “Marqués de Valdecilla” (IDIVAL), 39011 Santander, Spain
| | - Marcos López-Hoyos
- Immunology Department, University Hospital Marqués de Valdecilla, 39008 Santander, Spain;
- Autoimmunity and Transplantation Research Group, Research Institute “Marqués de Valdecilla” (IDIVAL), 39011 Santander, Spain
- Molecular Biology Department, University of Cantabria, 39011 Santander, Spain
| |
Collapse
|