1
|
Williams TL, Verdon G, Kuc RE, Currinn H, Bender B, Solcan N, Schlenker O, Macrae RGC, Brown J, Schütz M, Zhukov A, Sinha S, de Graaf C, Gräf S, Maguire JJ, Brown AJH, Davenport AP. Structural and functional determination of peptide versus small molecule ligand binding at the apelin receptor. Nat Commun 2024; 15:10714. [PMID: 39730334 PMCID: PMC11680790 DOI: 10.1038/s41467-024-55381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T892.64 as important in the ELA binding site, and R1684.64 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H1684.64 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function. Additionally, we present an apelin receptor crystal structure bound to the G protein-biased, small molecule agonist, CMF-019, which reveals a deeper binding mode versus the endogenous peptides at lipophilic pockets between transmembrane helices associated with GPCR activation. Overall, the data provide proof-of-principle for using genetic variation to identify key sites regulating receptor-ligand engagement.
Collapse
Affiliation(s)
- Thomas L Williams
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Grégory Verdon
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Heather Currinn
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Brian Bender
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Nicolae Solcan
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Oliver Schlenker
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Robyn G C Macrae
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jason Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Marco Schütz
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Andrei Zhukov
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Chris de Graaf
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant, Long Road, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Cambridge, UK
| | - Janet J Maguire
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Alastair J H Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK.
| | - Anthony P Davenport
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Nguyen VTD, Nguyen ND, Hy TS. ProteinReDiff: Complex-based ligand-binding proteins redesign by equivariant diffusion-based generative models. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:064102. [PMID: 39629167 PMCID: PMC11614476 DOI: 10.1063/4.0000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Proteins, serving as the fundamental architects of biological processes, interact with ligands to perform a myriad of functions essential for life. Designing functional ligand-binding proteins is pivotal for advancing drug development and enhancing therapeutic efficacy. In this study, we introduce ProteinReDiff, an diffusion framework targeting the redesign of ligand-binding proteins. Using equivariant diffusion-based generative models, ProteinReDiff enables the creation of high-affinity ligand-binding proteins without the need for detailed structural information, leveraging instead the potential of initial protein sequences and ligand SMILES strings. Our evaluations across sequence diversity, structural preservation, and ligand binding affinity underscore ProteinReDiff's potential to advance computational drug discovery and protein engineering.
Collapse
Affiliation(s)
| | - Nhan D Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Truong Son Hy
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
3
|
Liu Z, Chen S, Wu J. Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 2023; 41:1168-1181. [PMID: 37088569 DOI: 10.1016/j.tibtech.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Inspired by natural evolution, directed evolution randomly mutates the gene of interest through artificial evolution conditions with variants being screened for the required properties. Directed evolution is vital to the enhancement of protein properties and comprises the construction of libraries with considerable diversity as well as screening methods with sufficient efficiency as key steps. Owing to the various characteristics of proteins, specific methods are urgently needed for library screening, which is one of the main limiting factors in accelerating evolution. This review initially organizes the principles of ultrahigh-throughput screening from the perspective of protein properties. It then provides a comprehensive introduction to the latest progress and future trends in ultrahigh-throughput screening technologies for directed evolution.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Mendoza C, Hanegan C, Sperry A, Vargas L, Case T, Bikman B, Mizrachi D. Insulin receptor-inspired soluble insulin binder. Eur J Cell Biol 2023; 102:151293. [PMID: 36739671 DOI: 10.1016/j.ejcb.2023.151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The insulin receptor (IR) is a 320 kDa membrane receptor tyrosine kinase mediating the pleiotropic actions of insulin, leading to phosphorylation of several intracellular substrates including serine/threonine-protein kinase (AKT1), and IR autophosphorylation. Structural details of the IR have been recently revealed. A high-binding insulin site, L1 (Kd =2 nM), consists of two distant domains in the primary sequence of the IR. Our design simplified the L1 binding site and transformed it into a soluble insulin binder (sIB). The sIB, a 17 kDa protein, binds insulin with 38 nM affinity. The sIB competes with IR for insulin and reduces by more than 50% phosphorylation of AKT1 in HEK 293 T cells, with similar effects on IR autophosphorylation. The sIB represents a new tool for research of insulin binding and signaling properties.
Collapse
Affiliation(s)
- Christopher Mendoza
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Cameron Hanegan
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Alek Sperry
- Mechanical Engineering, College of Engineering, Brigham Young University, Provo, UT, United States
| | - Logan Vargas
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Trevor Case
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Benjamin Bikman
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States
| | - Dario Mizrachi
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
5
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
6
|
Ó'Fágáin C. Protein Stability: Enhancement and Measurement. Methods Mol Biol 2023; 2699:369-419. [PMID: 37647007 DOI: 10.1007/978-1-0716-3362-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This chapter defines protein stability, emphasizes its importance, and surveys the field of protein stabilization, with summary reference to a selection of 2014-2021 publications. One can enhance stability, particularly by protein engineering strategies but also by chemical modification and by other means. General protocols are set out on how to measure a given protein's (i) kinetic thermal stability and (ii) oxidative stability and (iii) how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán Ó'Fágáin
- School of Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
7
|
Waltenspühl Y, Ehrenmann J, Vacca S, Thom C, Medalia O, Plückthun A. Structural basis for the activation and ligand recognition of the human oxytocin receptor. Nat Commun 2022; 13:4153. [PMID: 35851571 PMCID: PMC9293896 DOI: 10.1038/s41467-022-31325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 01/19/2023] Open
Abstract
The small cyclic neuropeptide hormone oxytocin (OT) and its cognate receptor play a central role in the regulation of social behaviour and sexual reproduction. Here we report the single-particle cryo-electron microscopy structure of the active oxytocin receptor (OTR) in complex with its cognate ligand oxytocin. Our structure provides high-resolution insights into the OT binding mode, the OTR activation mechanism as well as the subtype specificity within the oxytocin/vasopressin receptor family.
Collapse
Affiliation(s)
- Yann Waltenspühl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760, Måløv, Denmark
| | - Janosch Ehrenmann
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
- leadXpro AG, PARK innovAARE, CH-5234, Villigen, Switzerland
| | - Santiago Vacca
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Cristian Thom
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
8
|
Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs). Sci Rep 2022; 12:8657. [PMID: 35606532 PMCID: PMC9126886 DOI: 10.1038/s41598-022-12731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The immense potential of G protein-coupled receptors (GPCRs) as targets for drug discovery is not fully realized due to the enormous difficulties associated with structure elucidation of these profoundly unstable membrane proteins. The existing methods of GPCR stability-engineering are cumbersome and low-throughput; in addition, the scope of GPCRs that could benefit from these techniques is limited. Here, we present a yeast-based screening platform for a single-step isolation of GRCR variants stable in the presence of short-chain detergents, a feature essential for their successful crystallization using vapor diffusion method. The yeast detergent-resistant cell wall presents a unique opportunity for compartmentalization, to physically link the receptor's phenotype to its encoding DNA, and thus enable discovery of stable GPCR variants with unprecedent efficiency. The scope of mutations identified by the method reveals a surprising amenability of the GPCR scaffold to stabilization, and suggests an intriguing possibility of amending the stability properties of GPCR by varying the structural status of the C-terminus.
Collapse
|
9
|
Schöppe J, Ehrenmann J, Waltenspühl Y, Plückthun A. Universal platform for the generation of thermostabilized GPCRs that crystallize in LCP. Nat Protoc 2022; 17:698-726. [PMID: 35140409 DOI: 10.1038/s41596-021-00660-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Structural studies of G-protein-coupled receptors (GPCRs) are often limited by difficulties in obtaining well-diffracting crystals suitable for high-resolution structure determination. During the past decade, crystallization in lipidic cubic phase (LCP) has become the most successful and widely used technique for obtaining such crystals. Despite often intense efforts, many GPCRs remain refractory to crystallization, even if receptors can be purified in sufficient amounts. To address this issue, we have developed a highly efficient screening and stabilization strategy for GPCRs, based on a fluorescence thermal stability assay readout, which seems to correlate particularly well with those GPCR constructs that remain native during incorporation into the LCP. Detailed protocols are provided for rapid and cost-efficient mutant and construct generation using sequence- and ligation-independent cloning, high-throughput magnetic bead-based protein purification from small-scale expressions in mammalian cells, the screening and optimal combination of mutations for increased receptor thermostability and the rapid identification of suitable chimeric fusion protein constructs for successful crystallization in LCP. We exemplify the method on three receptors from two different classes: the neurokinin 1 receptor, the oxytocin receptor and the parathyroid hormone 1 receptor.
Collapse
Affiliation(s)
- Jendrik Schöppe
- Department of Biochemistry, University of Zürich, Zurich, Switzerland.,Novo Nordisk A/S, Måløv, Denmark
| | - Janosch Ehrenmann
- Department of Biochemistry, University of Zürich, Zurich, Switzerland.,leadXpro AG, PARK InnovAARE, Villigen, Switzerland
| | - Yann Waltenspühl
- Department of Biochemistry, University of Zürich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
10
|
Kuiper BP, Prins RC, Billerbeck S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. Chembiochem 2021; 23:e202100507. [PMID: 34817110 PMCID: PMC9300125 DOI: 10.1002/cbic.202100507] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The construction of custom libraries is critical for rational protein engineering and directed evolution. Array‐synthesized oligo pools of thousands of user‐defined sequences (up to ∼350 bases in length) have emerged as a low‐cost commercially available source of DNA. These pools cost ≤10 % (depending on error rate and length) of other commercial sources of custom DNA, and this significant cost difference can determine whether an enzyme engineering project can be realized on a given research budget. However, while being cheap, oligo pools do suffer from a low concentration of individual oligos and relatively high error rates. Several powerful techniques that specifically make use of oligo pools have been developed and proven valuable or even essential for next‐generation protein and pathway engineering strategies, such as sequence‐function mapping, enzyme minimization, or de‐novo design. Here we consolidate the knowledge on these techniques and their applications to facilitate the use of oligo pools within the protein engineering community.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|