1
|
Chaichoompu E, Ruengphayak S, Wattanavanitchakorn S, Wansuksri R, Yonkoksung U, Suklaew PO, Chotineeranat S, Raungrusmee S, Vanavichit A, Toojinda T, Kamolsukyeunyong W. Development of Whole-Grain Rice Lines Exhibiting Low and Intermediate Glycemic Index with Decreased Amylose Content. Foods 2024; 13:3627. [PMID: 39594043 PMCID: PMC11593259 DOI: 10.3390/foods13223627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The demand for rice varieties with lower amylose content (AC) is increasing in Southeast Asia, primarily due to their desirable texture and cooking qualities. This study presents the development of whole-grain rice lines with low to intermediate glycemic index (GI) and reduced AC. We selected six rice lines for in vivo GI assessment based on their starch properties. We successfully identified two lines with low AC that exhibited low and intermediate GI values, respectively. Our findings indicate that dietary fiber (DF) content may significantly influence rice GI. The selected whole-grain low-GI line showed a higher ratio of soluble dietary fiber (SDF) to insoluble dietary fiber (IDF) compared to control varieties, highlighting SDF's potential positive role in lowering whole-grain rice's GI. This study underscores the feasibility of developing rice varieties with desirable agronomic traits, nutritional traits, and culinary attributes, particularly for individuals managing their blood sugar levels. Additionally, we proposed the positive role of starch composition, especially DF content, in modulating the GI of rice. This study reinforces the importance of incorporating starch properties and DF content into rice breeding programs to produce more health-oriented and marketable rice varieties.
Collapse
Affiliation(s)
- Ekawat Chaichoompu
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom 73140, Thailand; (E.C.); (S.R.); (S.W.); (A.V.); (T.T.)
- Interdisciplinary Graduate Program in Genetic Engineering and Bioinformatics, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Siriphat Ruengphayak
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom 73140, Thailand; (E.C.); (S.R.); (S.W.); (A.V.); (T.T.)
| | - Siriluck Wattanavanitchakorn
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom 73140, Thailand; (E.C.); (S.R.); (S.W.); (A.V.); (T.T.)
| | - Rungtiwa Wansuksri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand; (R.W.); (U.Y.); (S.C.)
| | - Usa Yonkoksung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand; (R.W.); (U.Y.); (S.C.)
| | - Phim On Suklaew
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkhen, Bangkok 10900, Thailand; (P.O.S.); (S.R.)
| | - Sunee Chotineeranat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand; (R.W.); (U.Y.); (S.C.)
| | - Sujitta Raungrusmee
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkhen, Bangkok 10900, Thailand; (P.O.S.); (S.R.)
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom 73140, Thailand; (E.C.); (S.R.); (S.W.); (A.V.); (T.T.)
| | - Theerayut Toojinda
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom 73140, Thailand; (E.C.); (S.R.); (S.W.); (A.V.); (T.T.)
| | - Wintai Kamolsukyeunyong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani 12120, Thailand; (R.W.); (U.Y.); (S.C.)
| |
Collapse
|
2
|
Sivabharathi RC, Rajagopalan VR, Suresh R, Sudha M, Karthikeyan G, Jayakanthan M, Raveendran M. Haplotype-based breeding: A new insight in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112129. [PMID: 38763472 DOI: 10.1016/j.plantsci.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Haplotype-based breeding (HBB) is one of the cutting-edge technologies in the realm of crop improvement due to the increasing availability of Single Nucleotide Polymorphisms identified by Next Generation Sequencing technologies. The complexity of the data can be decreased with fewer statistical tests and a lower probability of spurious associations by combining thousands of SNPs into a few hundred haplotype blocks. The presence of strong genomic regions in breeding lines of most crop species facilitates the use of haplotypes to improve the efficiency of genomic and marker-assisted selection. Haplotype-based breeding as a Genomic Assisted Breeding (GAB) approach harnesses the genome sequence data to pinpoint the allelic variation used to hasten the breeding cycle and circumvent the challenges associated with linkage drag. This review article demonstrates ways to identify candidate genes, superior haplotype identification, haplo-pheno analysis, and haplotype-based marker-assisted selection. The crop improvement strategies that utilize superior haplotypes will hasten the breeding progress to safeguard global food security.
Collapse
Affiliation(s)
- R C Sivabharathi
- Department of Genetics and Plant breeding, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - R Suresh
- Department of Rice, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, CPPS, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Raveendran
- Directorate of research, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
3
|
Kapoor C, Anamika, Mukesh Sankar S, Singh SP, Singh N, Kumar S. Omics-driven utilization of wild relatives for empowering pre-breeding in pearl millet. PLANTA 2024; 259:155. [PMID: 38750378 DOI: 10.1007/s00425-024-04423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.
Collapse
Affiliation(s)
- Chandan Kapoor
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anamika
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Mukesh Sankar
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - S P Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Gnanapragasam N, Prasanth VV, Sundaram KT, Kumar A, Pahi B, Gurjar A, Venkateshwarlu C, Kalia S, Kumar A, Dixit S, Kohli A, Singh UM, Singh VK, Sinha P. Extreme trait GWAS (Et-GWAS): Unraveling rare variants in the 3,000 rice genome. Life Sci Alliance 2024; 7:e202302352. [PMID: 38148113 PMCID: PMC10751245 DOI: 10.26508/lsa.202302352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023] Open
Abstract
Identifying high-impact, rare genetic variants associated with specific traits is crucial for crop improvement. The 3,010 rice genome (3K RG) dataset offers a valuable resource for discovering genomic regions with potential applications in crop breeding. We used Extreme Trait GWAS (Et-GWAS), employing bulk pooling and allele frequency measurement to efficiently extract rare variants from the 3K RG. This innovative approach facilitates the detection of associations between genetic variants and target traits, concentrating and quantifying rare alleles. In our study, on grain yield under drought stress, Et-GWAS successfully identified five key genes (OsPP2C11, OsK5.2, OsIRO2, OsPEX1, and OsPWA1) known for enhancing yield under drought. In addition, we examined the overlap of our results with previously reported qDTY-QTLs and observed that OsUCH1 and OsUCH2 genes were located within qDTY2.2 We compared Et-GWAS with conventional GWAS, finding it effectively capturing most candidate genes associated with the target trait. Validation with resistant starch showed similar results. To enhance user-friendliness, we developed a GUI for Et-GWAS; https://et-gwas.shinyapps.io/Et-GWAS/.
Collapse
Affiliation(s)
| | | | | | - Ajay Kumar
- International Rice Research Institute, South Asia Hub, Patancheru, India
| | - Bandana Pahi
- International Rice Research Institute, South Asia Hub, Patancheru, India
| | - Anoop Gurjar
- International Rice Research Institute, South-Asia Regional Centre, Varanasi, India
| | | | - Sanjay Kalia
- Department of Biotechnology, CGO Complex, New Delhi, India
| | - Arvind Kumar
- International Rice Research Institute, South-Asia Regional Centre, Varanasi, India
| | - Shalabh Dixit
- International Rice Research Institute, Los Banos, Philippines
| | - Ajay Kohli
- International Rice Research Institute, Los Banos, Philippines
| | - Uma Maheshwer Singh
- International Rice Research Institute, South-Asia Regional Centre, Varanasi, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, Patancheru, India
| | - Pallavi Sinha
- International Rice Research Institute, South Asia Hub, Patancheru, India
| |
Collapse
|
5
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC PLANT BIOLOGY 2024; 24:124. [PMID: 38373874 PMCID: PMC10877931 DOI: 10.1186/s12870-024-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield. RESULTS Amongst the 73 different QTNs in total, 24 were co-localized with already reported QTLs or loci in previous mapping studies. We obtained fifteen significant QTNs, pathway analysis revealed 10 potential candidates within 100kb of these QTNs that are predicted to govern plant height, days to flowering, and plot yield in rice. Based on their superior allelic information in 20 elite and 6 inferior genotypes, we found a higher percentage of superior alleles in the elite genotypes in comparison to inferior genotypes. Further, we implemented expression analysis and enrichment analysis enabling the identification of 73 candidate genes and 25 homologues of Arabidopsis, 19 of which might regulate rice yield traits. Of these candidate genes, 40 CGs were found to be enriched in 60 GO terms of the studied traits for instance, positive regulator metabolic process (GO:0010929), intracellular part (GO:0031090), and nucleic acid binding (GO:0090079). Haplotype and phenotypic variation analysis confirmed that LOC_OS09G15770, LOC_OS02G36710 and LOC_OS02G17520 are key candidates associated with rice yield. CONCLUSIONS Overall, we foresee that the QTNs, putative candidates elucidated in the study could summarize the polygenic regulatory networks controlling rice yield and be useful for breeding high-yielding varieties.
Collapse
Grants
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR32853/AGIII/103/1159/2019 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India.
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-NBPGR, Pusa, New Delhi, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | |
Collapse
|
6
|
Singh P, Sundaram KT, Vinukonda VP, Venkateshwarlu C, Paul PJ, Pahi B, Gurjar A, Singh UM, Kalia S, Kumar A, Singh VK, Sinha P. Superior haplotypes of key drought-responsive genes reveal opportunities for the development of climate-resilient rice varieties. Commun Biol 2024; 7:89. [PMID: 38216712 PMCID: PMC10786901 DOI: 10.1038/s42003-024-05769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Haplotype-based breeding is an emerging and innovative concept that enables the development of designer crop varieties by exploiting and exploring superior alleles/haplotypes among target genes to create new traits in breeding programs. In this regard, whole-genome re-sequencing of 399 genotypes (landraces and breeding lines) from the 3000 rice genomes panel (3K-RG) is mined to identify the superior haplotypes for 95 drought-responsive candidate genes. Candidate gene-based association analysis reveals 69 marker-trait associations (MTAs) in 16 genes for single plant yield (SPY) under drought stress. Haplo-pheno analysis of these 16 genes identifies superior haplotypes for seven genes associated with the higher SPY under drought stress. Our study reveals that the performance of lines possessing superior haplotypes is significantly higher (p ≤ 0.05) as measured by single plant yield (SPY), for the OsGSK1-H4, OsDSR2-H3, OsDIL1-H22, OsDREB1C-H3, ASR3-H88, DSM3-H4 and ZFP182-H4 genes as compared to lines without the superior haplotypes. The validation results indicate that a superior haplotype for the DREB transcription factor (OsDREB1C) is present in all the drought-tolerant rice varieties, while it was notably absent in all susceptible varieties. These lines carrying the superior haplotypes can be used as potential donors in haplotype-based breeding to develop high-yielding drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Preeti Singh
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | - Krishna T Sundaram
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | | | | | - Pronob J Paul
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | - Bandana Pahi
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India
| | - Anoop Gurjar
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Sanjay Kalia
- Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, India
| | - Arvind Kumar
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India.
| | - Pallavi Sinha
- International Rice Research Institute (IRRI), South-Asia Hub, Hyderabad, India.
| |
Collapse
|
7
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. Multi-model genome-wide association studies for appearance quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1304388. [PMID: 38273959 PMCID: PMC10808671 DOI: 10.3389/fpls.2023.1304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, International Crop Reseach Institute for Semi Arid Tropics (ICRISAT), Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
8
|
Liu G, Qiu D, Lu Y, Wu Y, Han X, Jiao Y, Wang T, Yang J, You A, Chen J, Zhang Z. Identification of Superior Haplotypes and Haplotype Combinations for Grain Size- and Weight-Related Genes for Breeding Applications in Rice ( Oryza sativa L.). Genes (Basel) 2023; 14:2201. [PMID: 38137023 PMCID: PMC10742856 DOI: 10.3390/genes14122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The identification of superior haplotypes and haplotype combinations is essential for haplotype-based breeding (HBB), which provides selection targets for genomics-assisted breeding. In this study, genotypes of 42 functional genes in rice were analyzed by targeted capture sequencing in a panel of 180 Indica rice accessions. In total, 69 SNPs/Indels in seven genes were detected to be associated with grain length (GL), grain width (GW), ratio of grain length-width (L/W) and thousand-grain weight (TGW) using candidate gene-based association analysis, including BG1 and GS3 for GL, GW5 for GW, BG1 and GW5 for L/W, and AET1, SNAC1, qTGW3, DHD1 and GW5 for TGW. Furthermore, two haplotypes were identified for each of the seven genes according to these associated SNPs/Indels, and the amount of genetic variation explained by different haplotypes ranged from 3.24% to 27.66%. Additionally, three, three and eight haplotype combinations for GL, L/W and TGW explained 25.38%, 5.5% and 22.49% of the total genetic variation for each trait, respectively. Further analysis showed that Minghui63 had the superior haplotype combination Haplotype Combination 4 (HC4) for TGW. The most interesting finding was that some widely used restorer lines derived from Minghui63 also have the superior haplotype combination HC4, and our breeding varieties and lines using the haplotype-specific marker panel also confirmed that the TGW of the lines was much higher than that of their sister lines without HC4, suggesting that TGW-HC4 is the superior haplotype combination for TGW and can be utilized in rice breeding.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Dongfeng Qiu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Yuxia Lu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Yan Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuesong Han
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Yaru Jiao
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Tingbao Wang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Jinsong Yang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Aiqing You
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| | - Jianguo Chen
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zaijun Zhang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (G.L.); (D.Q.); (Y.L.); (Y.W.); (X.H.); (Y.J.); (T.W.); (J.Y.); (A.Y.)
| |
Collapse
|
9
|
Mahmood U, Li X, Fan Y, Chang W, Niu Y, Li J, Qu C, Lu K. Multi-omics revolution to promote plant breeding efficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:1062952. [PMID: 36570904 PMCID: PMC9773847 DOI: 10.3389/fpls.2022.1062952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Crop production is the primary goal of agricultural activities, which is always taken into consideration. However, global agricultural systems are coming under increasing pressure from the rising food demand of the rapidly growing world population and changing climate. To address these issues, improving high-yield and climate-resilient related-traits in crop breeding is an effective strategy. In recent years, advances in omics techniques, including genomics, transcriptomics, proteomics, and metabolomics, paved the way for accelerating plant/crop breeding to cope with the changing climate and enhance food production. Optimized omics and phenotypic plasticity platform integration, exploited by evolving machine learning algorithms will aid in the development of biological interpretations for complex crop traits. The precise and progressive assembly of desire alleles using precise genome editing approaches and enhanced breeding strategies would enable future crops to excel in combating the changing climates. Furthermore, plant breeding and genetic engineering ensures an exclusive approach to developing nutrient sufficient and climate-resilient crops, the productivity of which can sustainably and adequately meet the world's food, nutrition, and energy needs. This review provides an overview of how the integration of omics approaches could be exploited to select crop varieties with desired traits.
Collapse
Affiliation(s)
- Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Chang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yue Niu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
10
|
Screening methods for cereal grains with different starch components: A mini review. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
12
|
John D, Sureshkumar S, Raman M. Type‐2 diabetes and identification of major genetic determinants of glycemic index in rice‐ A review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Deepa John
- Department of Biotechnology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| | - S Sureshkumar
- Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| | - Maya Raman
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Cochin Kerala 682506 India
| |
Collapse
|