1
|
Parra RG, Komives EA, Wolynes PG, Ferreiro DU. Frustration in physiology and molecular medicine. Mol Aspects Med 2025; 103:101362. [PMID: 40273505 DOI: 10.1016/j.mam.2025.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Molecules provide the ultimate language in terms of which physiology and pathology must be understood. Myriads of proteins participate in elaborate networks of interactions and perform chemical activities coordinating the life of cells. To perform these often amazing tasks, proteins must move and we must think of them as dynamic ensembles of three dimensional structures formed first by folding the polypeptide chains so as to minimize the conflicts between the interactions of their constituent amino acids. It is apparent however that, even when completely folded, not all conflicting interactions have been resolved so the structure remains 'locally frustrated'. Over the last decades it has become clearer that this local frustration is not just a random accident but plays an essential part of the inner workings of protein molecules. We will review here the physical origins of the frustration concept and review evidence that local frustration is important for protein physiology, protein-protein recognition, catalysis and allostery. Also, we highlight examples showing how alterations in the local frustration patterns can be linked to distinct pathologies. Finally we explore the extensions of the impact of frustration in higher order levels of organization of systems including gene regulatory networks and the neural networks of the brain.
Collapse
Affiliation(s)
- R Gonzalo Parra
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Diego U Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
2
|
Lee E, Tran N, Redzic JS, Singh H, Alamillo L, Holyoak T, Hamelberg D, Eisenmesser EZ. Identifying and controlling inactive and active conformations of a serine protease. SCIENCE ADVANCES 2025; 11:eadu7447. [PMID: 40203097 PMCID: PMC11980832 DOI: 10.1126/sciadv.adu7447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Serine proteases have been proposed to dynamically sample inactive and active conformations, but direct evidence at atomic resolution has remained elusive. Using nuclear magnetic resonance (NMR), we identified a single residue, D164, in exfoliative toxin A (ETA) that acts as a molecular "switch" to regulate global dynamic sampling. Mutations at this site shift the balance between inactive and active states, correlating directly with catalytic activity. Beyond identifying this dynamic switch, we demonstrate how it works in concert with other allosterically coupled sites to rationally control enzyme movements and catalytic function. This study provides a framework for linking conformational dynamics to function and paves the way for engineering enzymes, in particular, proteases, with tailored activities for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harmanpreet Singh
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Lorena Alamillo
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Zhao Y, Du L, Lin S, Bai L, Chen Y, Ye M, Zhang S, Su C, Zheng X. Clinical Phenotype and Genetic Analysis of a Family with Hereditary Antithrombin Deficiency Caused by SERPINC1 Gene Mutation. Thromb Haemost 2025. [PMID: 40097149 DOI: 10.1055/a-2558-8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Inherited deficiency of the antithrombin (hereditary antithrombin deficiency, AT deficiency, OMIM #613118) is a relatively rare (1:2,000-3,000) autosomal-dominant disorder with high risk of venous thromboembolism. The molecular basis of this condition has not yet fully understood, highlighting the need for further research to elucidate the underlying pathological mechanisms.This study aimed to investigate coagulation parameters and genetic phenotypes in a proband with hereditary antithrombin deficiency and her family members. Additionally, the investigation sought to provide preliminary insights for the molecular pathogenesis of this condition.Blood coagulation parameters, including plasma antithrombin activity (AT:A), antithrombin antigen (AT:Ag), protein C activity (PC:A), and protein S activity (PS:A) were measured in the peripheral blood of each family member by a Stago instrument. Peripheral blood was also extracted and sequenced to identify possible genetic mutation sites. The functional impact of variants on protein was subsequently analyzed by bioinformatics software.The proband, her mother, and brother all exhibited decreased activity and antigen of AT but normal PC and PS activity. The proband's father had normal activity and antigen levels of AT, PC, and PS. Sequencing revealed the proband's mother inherited the SERPINC1:c.661T > C,p.(Trp221Arg) heterozygous variant and her father harbored PROC:c.572_574del,p.(Lys193del) heterozygous variant while the proband as well as her brother carried both. Conservation analysis revealed that Trp221 is highly conserved across homologous species. Bioinformatics tools consistently classify the p.Trp221Arg mutation as "pathogenic" or "deleterious." Protein modeling indicated that the p.Trp221Arg variant does not alter the protein structure but may modify glycosylation sites to affect its function.The proband and family members exhibited varying degrees of decreased levels of AT and thrombosis, which were closely associated with inheritance of SERPINC1:c.661T > C,p.(Trp221Arg).
Collapse
Affiliation(s)
- Yating Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Longting Du
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, Prenatal Diagnosis Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Lu Bai
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manman Ye
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shihong Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chang Su
- Department of Hematology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaohe Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Fredenburgh JC, Weitz JI. Exosite crosstalk in thrombin. J Thromb Haemost 2025; 23:1160-1168. [PMID: 39842513 DOI: 10.1016/j.jtha.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site. These exosites bind substrates, inhibitors, cofactors, and receptors, which coordinate to direct thrombin to the appropriate location and modulate catalytic activity. Thus, the exosites are essential to the activity and regulation of thrombin. In addition to acting as binding sites, the exosites modulate the active site allosterically. Furthermore, the exosites impact each other, whereby the binding of ligands to one exosite impacts the function of the opposing exosite. Given the integral role that exosites play in the regulation of thrombin, they are attractive targets for the regulation of thrombin and for the development of new anticoagulants.
Collapse
Affiliation(s)
- James C Fredenburgh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Jeffrey I Weitz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Parra RG, Komives EA, Wolynes PG, Ferreiro DU. Frustration In Physiology And Molecular Medicine. ARXIV 2025:arXiv:2502.03851v1. [PMID: 39975445 PMCID: PMC11838788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Molecules provide the ultimate language in terms of which physiology and pathology must be understood. Myriads of proteins participate in elaborate networks of interactions and perform chemical activities coordinating the life of cells. To perform these often amazing tasks, proteins must move and we must think of them as dynamic ensembles of three dimensional structures formed first by folding the polypeptide chains so as to minimize the conflicts between the interactions of their constituent amino acids. It is apparent however that, even when completely folded, not all conflicting interactions have been resolved so the structure remains 'locally frustrated'. Over the last decades it has become clearer that this local frustration is not just a random accident but plays an essential part of the inner workings of protein molecules. We will review here the physical origins of the frustration concept and review evidence that local frustration is important for protein physiology, protein-protein recognition, catalysis and allostery. Also, we highlight examples showing how alterations in the local frustration patterns can be linked to distinct pathologies. Finally we explore the extensions of the impact of frustration in higher order levels of organization of systems including gene regulatory networks and the neural networks of the brain.
Collapse
Affiliation(s)
- R. Gonzalo Parra
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
6
|
Torres-Paris C, Song HJ, Engelberger F, Ramírez-Sarmiento CA, Komives EA. The Light Chain Allosterically Enhances the Protease Activity of Murine Urokinase-Type Plasminogen Activator. Biochemistry 2024; 63:1434-1444. [PMID: 38780522 PMCID: PMC11154964 DOI: 10.1021/acs.biochem.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1CT in the disordered light chain and C122CT in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies. Here we show that the disordered light chain induced a 3.7-fold increase in kcat of the protease domain of muPA. In addition, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and accelerated molecular dynamics (AMD) were performed to identify the interactions between the disordered light chain and the protease domain. HDX-MS revealed that the light chain is contacting the 110s, the turn between the β10- and β11-strand, and the β7-strand. A reduction in deuterium uptake was also observed in the activation loop, the 140s loop and the 220s loop, which forms the S1-specificty pocket where the substrate binds. These loops are further away from where the light chain seems to be interacting with the protease domain. Our results suggest that the light chain most likely increases the activity of muPA by allosterically favoring conformations in which the specificity pocket is formed. We propose a model by which the allostery would be transmitted through the β-strands of the β-barrels to the loops on the other side of the protease domain.
Collapse
Affiliation(s)
- Constanza Torres-Paris
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Harriet J. Song
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Felipe Engelberger
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - César A. Ramírez-Sarmiento
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - Elizabeth A. Komives
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| |
Collapse
|
7
|
Wu D, Salsbury FR. Allosteric Modulation of Thrombin by Thrombomodulin: Insights from Logistic Regression and Statistical Analysis of Molecular Dynamics Simulations. ACS OMEGA 2024; 9:23086-23100. [PMID: 38826540 PMCID: PMC11137727 DOI: 10.1021/acsomega.4c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
Thrombomodulin (TM), a transmembrane receptor integral to the anticoagulant pathway, governs thrombin's substrate specificity via interaction with thrombin's anion-binding exosite I. Despite its established role, the precise mechanisms underlying this regulatory function are yet to be fully unraveled. In this study, we deepen the understanding of these mechanisms through eight independent 1 μs all-atom simulations, analyzing thrombin both in its free form and when bound to TM fragments TM456 and TM56. Our investigations revealed distinct and significant conformational changes in thrombin mediated by the binding of TM56 and TM456. While TM56 predominantly influences motions within exosite I, TM456 orchestrates coordinated alterations across various loop regions, thereby unveiling a multifaceted modulatory role that extends beyond that of TM56. A highlight of our study is the identification of critical hydrogen bonds that undergo transformations during TM56 and TM456 binding, shedding light on the pivotal allosteric influence exerted by TM4 on thrombin's structural dynamics. This work offers a nuanced appreciation of TM's regulatory role in blood coagulation, paving the way for innovative approaches in the development of anticoagulant therapies and expanding the horizons in oncology therapeutics through a deeper understanding of molecular interactions in the coagulation pathway.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake
Forest University, Winston-Salem, North Carolina 27106, United
States
| | - Freddie R. Salsbury
- Department of Physics, Wake
Forest University, Winston-Salem, North Carolina 27106, United
States
| |
Collapse
|
8
|
Torres-Paris C, Chen Y, Xiao L, Song HJ, Chen P, Komives EA. The autoactivation of human single-chain urokinase-type plasminogen activator (uPA). J Biol Chem 2023; 299:105179. [PMID: 37607618 PMCID: PMC10520878 DOI: 10.1016/j.jbc.2023.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Most serine proteases are synthesized as inactive zymogens that are activated by cleavage by another protease in a tightly regulated mechanism. The urokinase-type plasminogen activator (uPA) and plasmin cleave and activate each other, constituting a positive feedback loop. How this mutual activation cycle begins has remained a mystery. We used hydrogen deuterium exchange mass spectrometry to characterize the dynamic differences between the inactive single-chain uPA (scuPA) and its active form two-chain uPA (tcuPA). The results show that the C-terminal β-barrel and the area around the new N terminus have significantly reduced dynamics in tcuPA as compared with scuPA. We also show that the zymogen scuPA is inactive but can, upon storage, become active in the absence of external proteases. In addition to plasmin, the tcuPA can activate scuPA by cleavage at K158, a process called autoactivation. Unexpectedly, tcuPA can cleave at position 158 even when this site is mutated. TcuPA can also cleave scuPA after K135 or K136 in the disordered linker, which generates the soluble protease domain of uPA. Plasmin cleaves scuPA exclusively after K158 and at a faster rate than tcuPA. We propose a mechanism by which the uPA receptor dimerization could promote autoactivation of scuPA on cell surfaces. These results resolve long-standing controversies in the literature surrounding the mechanism of uPA activation.
Collapse
Affiliation(s)
- Constanza Torres-Paris
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Yueyi Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Lufan Xiao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Harriet J Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Pingyu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
9
|
Komives EA. Dynamic allostery in thrombin-a review. Front Mol Biosci 2023; 10:1200465. [PMID: 37457835 PMCID: PMC10339233 DOI: 10.3389/fmolb.2023.1200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Thrombin is a serine protease that catalyzes a large number of different reactions including proteolytic cleave of fibrinogen to make the fibrin clot (procoagulant activity), of the protease activated receptors (for cell signaling) and of protein C generating activated protein C (anticoagulant activity). Thrombin has an effector binding site called the anion binding exosite 1 that is allosterically coupled to the active site. In this review, we survey results from thermodynamic characterization of the allosteric coupling as well as hydrogen-deuterium exchange mass spectrometry to reveal which parts of the thrombin structure are changed upon effector binding and/or mutagenesis, and finally NMR spectroscopy to characterize the different timescales of motions elicited by the effectors. We also relate the experimental work to computational network analysis of the thrombin-thrombomodulin complex.
Collapse
|
10
|
Pomilio AB, Vitale AA, Lazarowski AJ. Uncommon Noninvasive Biomarkers for the Evaluation and Monitoring of the Etiopathogenesis of Alzheimer's Disease. Curr Pharm Des 2022; 28:1152-1169. [DOI: 10.2174/1381612828666220413101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer´s disease (AD) is the most widespread dementia in the world, followed by vascular dementia. Since AD is a heterogeneous disease that shows several varied phenotypes, it is not easy to make an accurate diagnosis, so it arises when the symptoms are clear and the disease is already very advanced. Therefore, it is important to find out biomarkers for AD early diagnosis that facilitate treatment or slow down the disease. Classic biomarkers are obtained from cerebrospinal fluid and plasma, along with brain imaging by positron emission tomography. Attempts have been made to discover uncommon biomarkers from other body fluids, which are addressed in this update.
Objective:
This update aims to describe recent biomarkers from minimally invasive body fluids for the patients, such as saliva, urine, eye fluid or tears.
Methods:
Biomarkers were determined in patients versus controls by single tandem mass spectrometry, and immunoassays. Metabolites were identified by nuclear magnetic resonance, and microRNAs with genome-wide high-throughput real-time polymerase chain reaction-based platforms.
Results:
Biomarkers from urine, saliva, and eye fluid were described, including peptides/proteins, metabolites, and some microRNAs. The association with AD neuroinflammation and neurodegeneration was analyzed, highlighting the contribution of matrix metalloproteinases, the immune system and microglia, as well as the vascular system.
Conclusion:
Unusual biomarkers have been developed, which distinguish each stage and progression of the disease, and are suitable for the early AD diagnosis. An outstanding relationship of biomarkers with neuroinflammation and neurodegeneration was assessed, clearing up concerns of the etiopathogenesis of AD.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
11
|
Peacock RB, McGrann T, Zaragoza S, Komives EA. How Thrombomodulin Enables W215A/E217A Thrombin to Cleave Protein C but Not Fibrinogen. Biochemistry 2022; 61:77-84. [PMID: 34978431 DOI: 10.1021/acs.biochem.1c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The W215A/E217A mutant thrombin is called "anticoagulant thrombin" because its activity toward its procoagulant substrate, fibrinogen, is reduced more than 500-fold whereas in the presence of thrombomodulin (TM) its activity toward its anticoagulant substrate, protein C, is reduced less than 10-fold. To understand how these mutations so dramatically alter one activity over the other, we compared the backbone dynamics of wild type thrombin to those of the W215A/E217A mutant thrombin by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS). Our results show that the mutations cause the 170s, 180s, and 220s C-terminal β-barrel loops near the sites of mutation to exchange more, suggesting that the structure of this region is disrupted. Far from the mutation sites, residues at the N-terminus of the heavy chain, which need to be buried in the Ile pocket for correct structuring of the catalytic triad, also exchange much more than in wild type thrombin. TM binding causes reduced H/D exchange in these regions and also alters the dynamics of the β-strand that links the TM binding site to the catalytic Asp 102 in both wild type thrombin and in the W215A/E217A mutant thrombin. In contrast, whereas TM binding reduces the dynamics the 170, 180 and 220 s C-terminal β-barrel loops in WT thrombin, this region remains disordered in the W215A/E217A mutant thrombin. Thus, TM partially restores the catalytic activity of W215A/E217A mutant thrombin by allosterically altering its dynamics in a manner similar to that of wild type thrombin.
Collapse
Affiliation(s)
- Riley B Peacock
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Taylor McGrann
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Sofia Zaragoza
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|
12
|
Peacock RB, Komives EA. Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on Multiple Time Scales in the Serine Protease Thrombin. Biochemistry 2021; 60:3441-3448. [PMID: 34159782 DOI: 10.1021/acs.biochem.1c00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A deeper understanding of how hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals allostery is important because HDX-MS can reveal allostery in systems that are not amenable to nuclear magnetic resonance (NMR) spectroscopy. We were able to study thrombin and its complex with thrombomodulin, an allosteric regulator, by both HDX-MS and NMR. In this Perspective, we compare and contrast the results from both experiments and from molecular dynamics simulations. NMR detects changes in the chemical environment around the protein backbone N-H bond vectors, providing residue-level information about the conformational exchange between distinct states. HDX-MS detects changes in amide proton solvent accessibility and H-bonding. Taking advantage of NMR relaxation dispersion measurements of the time scale of motions, we draw conclusions about the motions reflected in HDX-MS experiments. Both experiments detect allostery, but they reveal different components of the allosteric transition. The insights gained from integrating NMR and HDX-MS into thrombin dynamics enable a clearer interpretation of the evidence for allostery revealed by HDX-MS in larger protein complexes and assemblies that are not amenable to NMR.
Collapse
Affiliation(s)
- Riley B Peacock
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|