1
|
Behem CR, Friedheim T, Holthusen H, Rapp A, Suntrop T, Graessler MF, Pinnschmidt HO, Wipper SH, von Lucadou M, Schwedhelm E, Renné T, Pfister K, Schierling W, Trepte CJC. Goal-directed colloid versus crystalloid therapy and microcirculatory blood flow following ischemia/reperfusion. Microvasc Res 2024; 152:104630. [PMID: 38048876 DOI: 10.1016/j.mvr.2023.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Ischemia/reperfusion can impair microcirculatory blood flow. It remains unknown whether colloids are superior to crystalloids for restoration of microcirculatory blood flow during ischemia/reperfusion injury. We tested the hypothesis that goal-directed colloid - compared to crystalloid - therapy improves small intestinal, renal, and hepatic microcirculatory blood flow in pigs with ischemia/reperfusion injury. METHODS This was a randomized trial in 32 pigs. We induced ischemia/reperfusion by supra-celiac aortic-cross-clamping. Pigs were randomized to receive either goal-directed isooncotic hydroxyethyl-starch colloid or balanced isotonic crystalloid therapy. Microcirculatory blood flow was measured using Laser-Speckle-Contrast-Imaging. The primary outcome was small intestinal, renal, and hepatic microcirculatory blood flow 4.5 h after ischemia/reperfusion. Secondary outcomes included small intestinal, renal, and hepatic histopathological damage, macrohemodynamic and metabolic variables, as well as specific biomarkers of tissue injury, renal, and hepatic function and injury, and endothelial barrier function. RESULTS Small intestinal microcirculatory blood flow was higher in pigs assigned to isooncotic hydroxyethyl-starch colloid therapy than in pigs assigned to balanced isotonic crystalloid therapy (768.7 (677.2-860.1) vs. 595.6 (496.3-694.8) arbitrary units, p = .007). There were no important differences in renal (509.7 (427.2-592.1) vs. 442.1 (361.2-523.0) arbitrary units, p = .286) and hepatic (604.7 (507.7-701.8) vs. 548.7 (444.0-653.3) arbitrary units, p = .376) microcirculatory blood flow between groups. Pigs assigned to colloid - compared to crystalloid - therapy also had less small intestinal, but not renal and hepatic, histopathological damage. CONCLUSIONS Goal-directed isooncotic hydroxyethyl-starch colloid - compared to balanced isotonic crystalloid - therapy improved small intestinal, but not renal and hepatic, microcirculatory blood flow in pigs with ischemia/reperfusion injury. Whether colloid therapy improves small intestinal microcirculatory blood flow in patients with ischemia/reperfusion needs to be investigated in clinical trials.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Holthusen
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adina Rapp
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timo Suntrop
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine H Wipper
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Mirjam von Lucadou
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karin Pfister
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wilma Schierling
- Department of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D, Ding W. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol 2023; 67:102906. [PMID: 37812880 PMCID: PMC10579540 DOI: 10.1016/j.redox.2023.102906] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Microvascular endothelial damage caused by intestinal ischemia‒reperfusion (II/R) is a primary catalyst for microcirculation dysfunction and enterogenous infection. Previous studies have mainly focused on how neutrophil extracellular traps (NETs) and ferroptosis cause intestinal epithelial injury, and little attention has been given to how NETs, mainly from circulatory neutrophils, affect intestinal endothelial cells during II/R. This study aimed to unravel the mechanisms through which NETs cause intestinal microvascular dysfunction. We first detected heightened local NET infiltration around the intestinal microvasculature, accompanied by increased endothelial cell ferroptosis, resulting in microcirculation dysfunction in both human and animal II/R models. However, the administration of the ferroptosis inhibitor ferrostatin-1 or the inhibition of NETs via neutrophil-specific peptidylarginine deiminase 4 (Pad4) deficiency led to positive outcomes, with reduced intestinal endothelial ferroptosis and microvascular function recovery. Moreover, RNA-seq analysis revealed a significant enrichment of mitophagy- and ferroptosis-related signaling pathways in HUVECs incubated with NETs. Mechanistically, elevated NET formation induced Fundc1 phosphorylation at Tyr18 in intestinal endothelial cells, which led to mitophagy inhibition, mitochondrial quality control imbalance, and excessive mitochondrial ROS generation and lipid peroxidation, resulting in endothelial ferroptosis and microvascular dysfunction. Nevertheless, using the mitophagy activator urolithin A or AAV-Fundc1 transfection could reverse this process and ameliorate microvascular damage. We first demonstrate that increased NETosis could result in intestinal microcirculatory dysfunction and conclude that suppressed NET formation can mitigate intestinal endothelial ferroptosis by improving Fundc1-dependent mitophagy. Targeting NETs could be a promising approach for treating II/R-induced intestinal microcirculatory dysfunction.
Collapse
Affiliation(s)
- Chengnan Chu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao Yang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Fang Chen
- School of Medicine, Southeast University, Nanjing, 210002, Jiangsu Province, China
| | - Lin Shi
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiqi Xu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Wang
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Baochen Liu
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenyang Wang
- Key Laboratory of Intestinal Injury, Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, PR China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, Jiangsu Province, China
| | - Weiwei Ding
- Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Behem CR, Haunschild J, Pinnschmidt HO, Gaeth C, Graessler MF, Trepte CJC, Etz CD, Debus ES, Wipper SH. Effects of fluids vs. vasopressors on spinal cord microperfusion in hemorrhagic shock induced ischemia/reperfusion. Microvasc Res 2022; 143:104383. [PMID: 35605693 DOI: 10.1016/j.mvr.2022.104383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Spinal cord injury induced by ischemia/reperfusion is a devastating complication of aortic repair. Despite developments for prevention and treatment of spinal cord injury, incidence is still considerably high majorly impacting patient outcome. Microcirculation is paramount for tissue perfusion and oxygen supply and often dissociated from macrohemodynamic parameters used to guide resuscitation. Effects of fluids vs. vasopressors in the setting of hemodynamic resuscitation on spinal cord microperfusion are unknown. Aim of this study was to compare the effects of vasopressor and fluid resuscitation on spinal cord microperfusion in a translational acute pig model of hemorrhagic shock induced ischemia/reperfusion injury. METHODS We designed this study as prospective randomized explorative large animal study. We induced hemorrhagic shock in 20 pigs as a model of global ischemia/reperfusion injury. We randomized animals to receive either fluid or vasopressor resuscitation. We measured spinal cord microperfusion using fluorescent microspheres as well as laser-Doppler probes. We monitored and analyzed macrohemodynamic parameters and cerebrospinal fluid pressure. RESULTS Spinal cord microperfusion decreased following hemorrhagic shock induced ischemia/reperfusion injury. Both fluids and vasopressors sufficiently restored spinal cord microperfusion. There were no important changes between groups (percentage changes compared to baseline: fluids 14.0 (0.31-27.6) vs. vasopressors 24.3 (8.12-40.4), p = .340). However, cerebrospinal fluid pressure was higher in animals receiving fluid resuscitation (percentage changes compared to baseline: fluids 27.7 (12.6-42.8) vs. vasopressors -5.56 ((-19.8)-8.72), p = .003). Microcirculatory resuscitation was in line with improvements of macrohemodynamic parameters. CONCLUSIONS Both, fluids and vasopressors, equally restored spinal cord microperfusion in a porcine acute model of hemorrhagic shock induced ischemia/reperfusion injury. However, significant differences in cerebrospinal fluid pressure following resuscitation were present. Future studies should evaluate these effects in perfusion disruption induced ischemia/reperfusion conditions of microcirculatory deterioration.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Josephina Haunschild
- University Department for Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharina Gaeth
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian D Etz
- University Department for Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany
| | - E Sebastian Debus
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| | - Sabine H Wipper
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), Hamburg, Germany
| |
Collapse
|
4
|
Chalkias A, Xenos M. Relationship of Effective Circulating Volume with Sublingual Red Blood Cell Velocity and Microvessel Pressure Difference: A Clinical Investigation and Computational Fluid Dynamics Modeling. J Clin Med 2022; 11:jcm11164885. [PMID: 36013124 PMCID: PMC9410298 DOI: 10.3390/jcm11164885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
The characteristics of physiologic hemodynamic coherence are not well-investigated. We examined the physiological relationship between circulating blood volume, sublingual microcirculatory perfusion, and tissue oxygenation in anesthetized individuals with steady-state physiology. We assessed the correlation of mean circulatory filling pressure analogue (Pmca) with sublingual microcirculatory perfusion and red blood cell (RBC) velocity using SDF+ imaging and a modified optical flow-based algorithm. We also reconstructed the 2D microvessels and applied computational fluid dynamics (CFD) to evaluate the correlation of Pmca and RBC velocity with the obtained pressure and velocity fields in microvessels from CFD (pressure difference, (Δp)). Twenty adults with a median age of 39.5 years (IQR 35.5−44.5) were included in the study. Sublingual velocity distributions were similar and followed a log-normal distribution. A constant Pmca value of 14 mmHg was observed in all individuals with sublingual RBC velocity 6−24 μm s−1, while a Pmca < 14 mmHg was observed in those with RBC velocity > 24 μm s−1. When Pmca ranged between 11 mmHg and 15 mmHg, Δp fluctuated between 0.02 Pa and 0.1 Pa. In conclusion, the intact regulatory mechanisms maintain a physiological coupling between systemic hemodynamics, sublingual microcirculatory perfusion, and tissue oxygenation when Pmca is 14 mmHg.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
- Outcomes Research Consortium, Cleveland, OH 44195, USA
- Committee on Shock, Hellenic Society of Cardiopulmonary Resuscitation, 10434 Athens, Greece
- Correspondence:
| | - Michalis Xenos
- Section of Applied and Computational Mathematics, Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Valeanu L, Bubenek-Turconi SI, Ginghina C, Balan C. Hemodynamic Monitoring in Sepsis-A Conceptual Framework of Macro- and Microcirculatory Alterations. Diagnostics (Basel) 2021; 11:1559. [PMID: 34573901 PMCID: PMC8469937 DOI: 10.3390/diagnostics11091559] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
Circulatory failure in sepsis is common and places a considerable burden on healthcare systems. It is associated with an increased likelihood of mortality, and timely recognition is a prerequisite to ensure optimum results. While there is consensus that aggressive source control, adequate antimicrobial therapy and hemodynamic management constitute crucial determinants of outcome, discussion remains about the best way to achieve each of these core principles. Sound cardiovascular support rests on tailored fluid resuscitation and vasopressor therapy. To this end, an overarching framework to improve cardiovascular dynamics has been a recurring theme in modern critical care. The object of this review is to examine the nature of one such framework that acknowledges the growing importance of adaptive hemodynamic support combining macro- and microhemodynamic variables to produce adequate tissue perfusion.
Collapse
Affiliation(s)
- Liana Valeanu
- 1st Department of Cardiovascular Anesthesiology and Intensive Care, “Prof. C. C. Iliescu” Emergency Institute for Cardiovascular Diseases, 258 Fundeni Road, 022328 Bucharest, Romania; (L.V.); (S.-I.B.-T.)
- Department of Anesthesiology and Intensive Care, University of Medicine and Pharmacy “Carol Davila”, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Serban-Ion Bubenek-Turconi
- 1st Department of Cardiovascular Anesthesiology and Intensive Care, “Prof. C. C. Iliescu” Emergency Institute for Cardiovascular Diseases, 258 Fundeni Road, 022328 Bucharest, Romania; (L.V.); (S.-I.B.-T.)
- Department of Anesthesiology and Intensive Care, University of Medicine and Pharmacy “Carol Davila”, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Ginghina
- 3rd Department of Cardiology, “Prof. C. C. Iliescu” Emergency Institute for Cardiovascular Diseases, 258 Fundeni Road, 022328 Bucharest, Romania;
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Cosmin Balan
- 1st Department of Cardiovascular Anesthesiology and Intensive Care, “Prof. C. C. Iliescu” Emergency Institute for Cardiovascular Diseases, 258 Fundeni Road, 022328 Bucharest, Romania; (L.V.); (S.-I.B.-T.)
| |
Collapse
|