1
|
Scieuzo C, Rinaldi R, Giglio F, Salvia R, Ali AlSaleh M, Jakše J, Pain A, Antony B, Falabella P. Identification of Multifunctional Putative Bioactive Peptides in the Insect Model Red Palm Weevil ( Rhynchophorus ferrugineus). Biomolecules 2024; 14:1332. [PMID: 39456265 PMCID: PMC11506011 DOI: 10.3390/biom14101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immunity, the body's initial defense against bacteria, fungi, and viruses, heavily depends on antimicrobial peptides (AMPs), which are small molecules produced by all living organisms. Insects, with their vast biodiversity, are one of the most abundant and innovative sources of AMPs. In this study, AMPs from the red palm weevil (RPW) Rhynchophorus ferrugineus (Coleoptera: Curculionidae), a known invasive pest of palm species, were examined. The AMPs were identified in the transcriptomes from different body parts of male and female adults, under different experimental conditions, including specimens collected from the field and those reared in the laboratory. The RPW transcriptomes were examined to predict antimicrobial activity, and all sequences putatively encoding AMPs were analyzed using several machine learning algorithms available in the CAMPR3 database. Additionally, anticancer, antiviral, and antifungal activity of the peptides were predicted using iACP, AVPpred, and Antifp server tools, respectively. Physicochemical parameters were assessed using the Antimicrobial Peptide Database Calculator and Predictor. From these analyses, 198 putatively active peptides were identified, which can be tested in future studies to validate the in silico predictions. Genome-wide analysis revealed that several AMPs have predominantly emerged through gene duplication. Noticeably, we detect a newly originated defensin allele from an ancestral defensin via the deletion of two amino acids following gene duplication in RPW, which may confer an enhanced resilience to microbial infection. Our study shed light on AMP gene families and shows that high duplication and deletion rates are essential to achieve a diversity of antimicrobial mechanisms; hence, we propose the RPW AMPs as a model for exploring gene duplication and functional variations against microbial infection.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Roberta Rinaldi
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| | - Fabiana Giglio
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| | - Rosanna Salvia
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia;
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000 Ljubljana, Slovenia;
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah 23955-6900, Saudi Arabia;
| | - Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, Riyadh 11451, Saudi Arabia;
| | - Patrizia Falabella
- Department of Basic and Applied Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (R.R.); (F.G.); (R.S.)
| |
Collapse
|
2
|
Johny J, Nihad M, Alharbi HA, AlSaleh MA, Antony B. Silencing sensory neuron membrane protein RferSNMPu1 impairs pheromone detection in the invasive Asian Palm Weevil. Sci Rep 2024; 14:16541. [PMID: 39019908 PMCID: PMC11254914 DOI: 10.1038/s41598-024-67309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.
Collapse
Affiliation(s)
- Jibin Johny
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czechia
| | - Mohammad Nihad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hattan A Alharbi
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammed Ali AlSaleh
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Binu Antony
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Antony B, Montagné N, Comte A, Mfarrej S, Jakše J, Capoduro R, Shelke R, Cali K, AlSaleh MA, Persaud K, Pain A, Jacquin-Joly E. Deorphanizing an odorant receptor tuned to palm tree volatile esters in the Asian palm weevil sheds light on the mechanisms of palm tree selection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 169:104129. [PMID: 38704126 DOI: 10.1016/j.ibmb.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.
Collapse
Affiliation(s)
- Binu Antony
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jernej Jakše
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, SI-1000, Ljubljana, Slovenia
| | - Rémi Capoduro
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| | - Rajan Shelke
- Don Bosco College of Agriculture, Agricultural Entomology Department, Sulcorna, Goa, 403705, India
| | - Khasim Cali
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Mohammed Ali AlSaleh
- King Saud University, Chair of Date Palm Research, Center for Chemical Ecology and Functional Genomics, Department of Plant Protection, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia
| | - Krishna Persaud
- The University of Manchester, Department of Chemical Engineering, Manchester, M13 9PL, UK
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Bioscience Programme, BESE Division, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, 78000, Versailles, France
| |
Collapse
|
4
|
Fu C, Yang D, Long WC, Xiao X, Wang H, Jiang N, Yang Y. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:453. [PMID: 38720243 PMCID: PMC11080265 DOI: 10.1186/s12864-024-10372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Insect Cytochrome P450 monooxygenase (CYPs or P450s) plays an important role in detoxifying insecticides, causing insect populations to develop resistance. However, the molecular functions of P450 gene family in Cyrtotrachelus buqueti genome are still lacking. RESULTS In this study, 71 CbuP450 genes have been identified. The amino acids length of CbuP450 proteins was between 183 aa ~ 1041 aa. They are proteins with transmembrane domains. The main component of their secondary structure is α-helix and random coils. Phylogenetic analysis showed that C. buqueti and Rhynchophorus ferrugineus were the most closely related. This gene family has 29 high-frequency codons, which tend to use A/T bases and A/T ending codons. Gene expression analysis showed that CbuP450_23 in the female adult may play an important role on high temperature resistance, and CbuP450_17 in the larval may play an important role on low temperature tolerance. CbuP450_10, CbuP450_17, CbuP450_23, CbuP450_10, CbuP450_16, CbuP450_20, CbuP450_23 and CbuP450_ 29 may be related to the regulation of bamboo fiber degradation genes in C. buqueti. Protein interaction analysis indicates that most CbuP450 proteins are mainly divided into three aspects: encoding the biosynthesis of ecdysteroids, participating in the decomposition of synthetic insecticides, metabolizing insect hormones, and participating in the detoxification of compounds. CONCLUSIONS We systematically analyzed the gene and protein characteristics, gene expression, and protein interactions of CbuP450 gene family, revealing the key genes involved in the stress response of CbuP450 gene family in the resistance of C. buqueti to high or low temperature stress, and identified the key CbuP450 proteins involved in important life activity metabolism. These results provided a reference for further research on the function of P450 gene family in C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| | - Ding Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Wen Cong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - XiMeng Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| |
Collapse
|
5
|
Hoddle MS, Antony B, El-Shafie HAF, Chamorro ML, Milosavljević I, Löhr B, Faleiro JR. Taxonomy, Biology, Symbionts, Omics, and Management of Rhynchophorus Palm Weevils (Coleoptera: Curculionidae: Dryophthorinae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:455-479. [PMID: 38270987 DOI: 10.1146/annurev-ento-013023-121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus palmarum, both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, R. ferrugineus has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.
Collapse
Affiliation(s)
- Mark S Hoddle
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Binu Antony
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia;
| | - Hamadttu A F El-Shafie
- Sustainable Date Palm Pest Management Research Program, Date Palm Research Center of Excellence, King Faisal University, Hofuf-Al-Ahsa, Saudi Arabia;
| | - M Lourdes Chamorro
- Systematic Entomology Laboratory, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA;
| | - Ivan Milosavljević
- Department of Entomology, University of California, Riverside, California, USA; ,
| | | | | |
Collapse
|
6
|
Sudalaimuthuasari N, Kundu B, Hazzouri KM, Amiri KMA. Near-chromosomal-level genome of the red palm weevil (Rhynchophorus ferrugineus), a potential resource for genome-based pest control. Sci Data 2024; 11:45. [PMID: 38184710 PMCID: PMC10771492 DOI: 10.1038/s41597-024-02910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
The red palm weevil (RPW) is a highly destructive pest that mainly affects palms, particularly date palms (Phoenix dactylifera), in the Arabian Gulf region. In this study, we present a near-chromosomal-level genome assembly of the RPW using a combination of PacBio HiFi and Dovetail Omini-C reads. The final genome assembly is around 779 Mb in size, with an N50 of ~43 Mb, consistent with our previous flow cytometry estimates. The completeness of the genome was confirmed through BUSCO analysis, which indicates the presence of 99.5% of BUSCO single copy orthologous genes. The genome annotation identified a total of 29,666 protein-coding, 1,091 tRNA and 543 rRNA genes. Overall, the proposed genome assembly is significantly superior to existing assemblies in terms of contiguity, integrity, and genome completeness.
Collapse
Affiliation(s)
| | - Biduth Kundu
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Khaled M Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, UAE.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, UAE.
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
7
|
Rodriguez Ruiz A, Van Dam AR. Metagenomic binning of PacBio HiFi data prior to assembly reveals a complete genome of Cosmopolites sordidus (Germar) (Coleopterea: Curculionidae, Dryophthorinae) the most damaging arthropod pest of bananas and plantains. PeerJ 2023; 11:e16276. [PMID: 38025758 PMCID: PMC10676084 DOI: 10.7717/peerj.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
PacBio HiFi sequencing was employed in combination with metagenomic binning to produce a high-quality reference genome of Cosmopolites sordidus. We compared k-mer and alignment reference based pre-binning and post-binning approaches to remove contamination. We were also interested to know if the post-binning approach had interspersed bacterial contamination within intragenic regions of Arthropoda binned contigs. Our analyses identified 3,433 genes that were composed with reads identified as of putative bacterial origins. The pre-binning approach yielded a C. sordidus genome of 1.07 Gb genome composed of 3,089 contigs with 98.6% and 97.1% complete and single copy genome and protein BUSCO scores respectively. In this article we demonstrate that in this case the pre-binning approach does not sacrifice assembly quality for more stringent metagenomic filtering. We also determine post-binning allows for increased intragenic contamination increased with increasing coverage, but the frequency of gene contamination increased with lower coverage. Future work should focus on developing reference free pre-binning approaches for HiFi reads produced from eukaryotic based metagenomic samples.
Collapse
Affiliation(s)
- Alfredo Rodriguez Ruiz
- Departamento de Biología, Universidad de Puerto Rico Recinto Universitario de Mayagüez, Mayagüez, Puerto Rico, United States of America
| | - Alex R. Van Dam
- Departamento de Biología, Universidad de Puerto Rico Recinto Universitario de Mayagüez, Mayagüez, Puerto Rico, United States of America
| |
Collapse
|
8
|
Sahoo RK, Manu S, Chandrakumaran NK, Vasudevan K. Nuclear and Mitochondrial Genome Assemblies of the Beetle, Zygogramma bicolorata, a Globally Important Biocontrol Agent of Invasive Weed Parthenium hysterophorus. Genome Biol Evol 2023; 15:evad188. [PMID: 37831427 PMCID: PMC10603765 DOI: 10.1093/gbe/evad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023] Open
Abstract
Implementing a genetic-based approach to achieve the full potential of classical biocontrol programs has been advocated for decades. The availability of genome-level information brings the opportunity to scrutinize biocontrol traits for their efficacy and evolvability. However, implementation of this advocacy remains limited to few instances. Biocontrol of a globally noxious weed, Parthenium hysterophorus, by the leaf-feeding beetle, Zygogramma bicolorata, has been in place for more than four decades now, with varying levels of success. As the first step in providing genetic-based improvement to this biocontrol program, we describe the nuclear and mitochondrial assemblies of Z. bicolorata. We assembled the genome from the long-read sequence data, error corrected with high-throughput short reads and checked for contaminants and sequence duplication to produce a 936 Mb nuclear genome. With 96.5% Benchmarking Universal Single-Copy Orthologs completeness and the long terminal repeat assembly index 12.91, we present a reference-quality assembly that appeared to be repeat rich at 62.7% genome-wide and consists of 29,437 protein-coding regions. We detected signature of nuclear insertion of mitochondrial fragments in 80 nuclear positions comprising 13 kb out of 17.9 kb mitochondria genome sequence. This genome, along with its annotations, provides a valuable resource to gain further insights into the biocontrol traits of Z. bicolorata for improving the control of the invasive weed P. hysterophorus.
Collapse
Affiliation(s)
- Ranjit Kumar Sahoo
- Laboratory for the Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Shivakumara Manu
- Laboratory for the Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Naveen Kumar Chandrakumaran
- Laboratory for the Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| |
Collapse
|
9
|
Patra AK, Ho PT, Jun S, Lee SJ, Kim Y, Won YJ. Genome assembly of the Korean intertidal mud-creeper Batillaria attramentaria. Sci Data 2023; 10:498. [PMID: 37507420 PMCID: PMC10382545 DOI: 10.1038/s41597-023-02403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Batillaridae is a common gastropod family that occurs abundantly in the shallow coastal zone of the intertidal mudflats of the northwest Pacific Ocean, Australasia, and North America. In this family, Batillaria attramentaria is known for its biological invasion and colonization in estuarine and intertidal zones. It can endure and adapt the harsh intertidal conditions such as frequent temperature alteration, salinity, and air exposure. Therefore, we sequenced and assembled this Korean batillariid genome to get insight into its intertidal adaptive features. Approximately 53 Gb of DNA sequences were generated, and 863 scaffolds were assembled into a draft genome of 0.715 Gb with 97.1% BUSCO completeness value. A total of 40,596 genes were predicted. We estimated that B. attramentaria and Conus consors diverged about 230 million years ago (MYA) based on the phylogenetic analysis of closely related gastropod species. This genome study sets the footstep for genomics studies among native and introduced Batillaria populations and the Batillaridae family members.
Collapse
Affiliation(s)
- Ajit Kumar Patra
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | - Phuong-Thao Ho
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Department of International Program, US Vietnam Talent International School, Ho Chi Minh city, Viet Nam
| | - Siyeong Jun
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | | - Yuseob Kim
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea.
| | - Yong-Jin Won
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
10
|
Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A Bridge to the Pest. INSECTS 2023; 14:255. [PMID: 36975940 PMCID: PMC10054242 DOI: 10.3390/insects14030255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is the most devastating pest of palm trees worldwide. Mitigation of the economic and biodiversity impact it causes is an international priority that could be greatly aided by a better understanding of its biology and genetics. Despite its relevance, the biology of the RPW remains poorly understood, and research on management strategies often focuses on outdated empirical methods that produce sub-optimal results. With the development of omics approaches in genetic research, new avenues for pest control are becoming increasingly feasible. For example, genetic engineering approaches become available once a species's target genes are well characterized in terms of their sequence, but also population variability, epistatic interactions, and more. In the last few years alone, there have been major advances in omics studies of the RPW. Multiple draft genomes are currently available, along with short and long-read transcriptomes, and metagenomes, which have facilitated the identification of genes of interest to the RPW scientific community. This review describes omics approaches previously applied to RPW research, highlights findings that could be impactful for pest management, and emphasizes future opportunities and challenges in this area of research.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | | | | |
Collapse
|
11
|
Han S, Dias GB, Basting PJ, Viswanatha R, Perrimon N, Bergman C. Local assembly of long reads enables phylogenomics of transposable elements in a polyploid cell line. Nucleic Acids Res 2022; 50:e124. [PMID: 36156149 PMCID: PMC9757076 DOI: 10.1093/nar/gkac794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/21/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Animal cell lines often undergo extreme genome restructuring events, including polyploidy and segmental aneuploidy that can impede de novo whole-genome assembly (WGA). In some species like Drosophila, cell lines also exhibit massive proliferation of transposable elements (TEs). To better understand the role of transposition during animal cell culture, we sequenced the genome of the tetraploid Drosophila S2R+ cell line using long-read and linked-read technologies. WGAs for S2R+ were highly fragmented and generated variable estimates of TE content across sequencing and assembly technologies. We therefore developed a novel WGA-independent bioinformatics method called TELR that identifies, locally assembles, and estimates allele frequency of TEs from long-read sequence data (https://github.com/bergmanlab/telr). Application of TELR to a ∼130x PacBio dataset for S2R+ revealed many haplotype-specific TE insertions that arose by transposition after initial cell line establishment and subsequent tetraploidization. Local assemblies from TELR also allowed phylogenetic analysis of paralogous TEs, which revealed that proliferation of TE families in vitro can be driven by single or multiple source lineages. Our work provides a model for the analysis of TEs in complex heterozygous or polyploid genomes that are recalcitrant to WGA and yields new insights into the mechanisms of genome evolution in animal cell culture.
Collapse
Affiliation(s)
| | | | - Preston J Basting
- Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, USA,Howard Hughes Medical Institute, Boston, MA, USA
| | - Casey M Bergman
- To whom correspondence should be addressed. Tel: +1 706 542 1764; Fax: +1 706 542 3910;
| |
Collapse
|
12
|
Eleftheriou E, Aury JM, Vacherie B, Istace B, Belser C, Noel B, Moret Y, Rigaud T, Berro F, Gasparian S, Labadie-Bretheau K, Lefebvre T, Madoui MA. Chromosome-scale assembly of the yellow mealworm genome. OPEN RESEARCH EUROPE 2022; 1:94. [PMID: 37645128 PMCID: PMC10445852 DOI: 10.12688/openreseurope.13987.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 03/12/2024]
Abstract
Background: The yellow mealworm beetle, Tenebrio molitor, is a promising alternative protein source for animal and human nutrition and its farming involves relatively low environmental costs. For these reasons, its industrial scale production started this century. However, to optimize and breed sustainable new T. molitor lines, the access to its genome remains essential. Methods: By combining Oxford Nanopore and Illumina Hi-C data, we constructed a high-quality chromosome-scale assembly of T. molitor. Then, we combined RNA-seq data and available coleoptera proteomes for gene prediction with GMOVE. Results: We produced a high-quality genome with a N50 = 21.9Mb with a completeness of 99.5% and predicted 21,435 genes with a median size of 1,780 bp. Gene orthology between T. molitor and Tribolium castaneum showed a highly conserved synteny between the two coleoptera and paralogs search revealed an expansion of histones in the T. molitor genome. Conclusions: The present genome will greatly help fundamental and applied research such as genetic breeding and will contribute to the sustainable production of the yellow mealworm.
Collapse
Affiliation(s)
- Evangelia Eleftheriou
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Benoît Vacherie
- Genoscope, Institut de biologie François Jacob, CEA, Université Paris‐Saclay, Evry, 91057, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | - Thierry Rigaud
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | | | | | - Karine Labadie-Bretheau
- Genoscope, Institut de biologie François Jacob, CEA, Université Paris‐Saclay, Evry, 91057, France
| | | | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Eleftheriou E, Aury JM, Vacherie B, Istace B, Belser C, Noel B, Moret Y, Rigaud T, Berro F, Gasparian S, Labadie-Bretheau K, Lefebvre T, Madoui MA. Chromosome-scale assembly of the yellow mealworm genome. OPEN RESEARCH EUROPE 2022; 1:94. [PMID: 37645128 PMCID: PMC10445852 DOI: 10.12688/openreseurope.13987.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 08/31/2023]
Abstract
Background: The yellow mealworm beetle, Tenebrio molitor, is a promising alternative protein source for animal and human nutrition and its farming involves relatively low environmental costs. For these reasons, its industrial scale production started this century. However, to optimize and breed sustainable new T. molitor lines, the access to its genome remains essential. Methods: By combining Oxford Nanopore and Illumina Hi-C data, we constructed a high-quality chromosome-scale assembly of T. molitor. Then, we combined RNA-seq data and available coleoptera proteomes for gene prediction with GMOVE. Results: We produced a high-quality genome with a N50 = 21.9Mb with a completeness of 99.5% and predicted 21,435 genes with a median size of 1,780 bp. Gene orthology between T. molitor and Tribolium castaneum showed a highly conserved synteny between the two coleoptera and paralogs search revealed an expansion of histones in the T. molitor genome. Conclusions: The present genome will greatly help fundamental and applied research such as genetic breeding and will contribute to the sustainable production of the yellow mealworm.
Collapse
Affiliation(s)
- Evangelia Eleftheriou
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Benoît Vacherie
- Genoscope, Institut de biologie François Jacob, CEA, Université Paris‐Saclay, Evry, 91057, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | - Thierry Rigaud
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | | | | | - Karine Labadie-Bretheau
- Genoscope, Institut de biologie François Jacob, CEA, Université Paris‐Saclay, Evry, 91057, France
| | | | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ Evry, Université Paris-Saclay, Université Paris-Saclay, Evry, 91057, France
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
14
|
Microsatellite Variation in the Most Devastating Beetle Pests (Coleoptera: Curculionidae) of Agricultural and Forest Crops. Int J Mol Sci 2022; 23:ijms23179847. [PMID: 36077247 PMCID: PMC9456221 DOI: 10.3390/ijms23179847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Weevils, classified in the family Curculionidae (true weevils), constitute a group of phytophagous insects of which many species are considered significant pests of crops. Within this family, the red palm weevil (RPW), Rhynchophorus ferrugineus, has an integral role in destroying crops and has invaded all countries of the Middle East and many in North Africa, Southern Europe, Southeast Asia, Oceania, and the Caribbean Islands. Simple sequence repeats (SSRs), also termed microsatellites, have become the DNA marker technology most applied to study population structure, evolution, and genetic diversity. Although these markers have been widely examined in many mammalian and plant species, and draft genome assemblies are available for many species of true weevils, very little is yet known about SSRs in weevil genomes. Here we carried out a comparative analysis examining and comparing the relative abundance, relative density, and GC content of SSRs in previously sequenced draft genomes of nine true weevils, with an emphasis on R. ferrugineus. We also used Illumina paired-end sequencing to generate draft sequence for adult female RPW and characterized it in terms of perfect SSRs with 1–6 bp nucleotide motifs. Among weevil genomes, mono- to trinucleotide SSRs were the most frequent, and mono-, di-, and hexanucleotide SSRs exhibited the highest GC content. In these draft genomes, SSR number and genome size were significantly correlated. This work will aid our understanding of the genome architecture and evolution of Curculionidae weevils and facilitate exploring SSR molecular marker development in these species.
Collapse
|
15
|
Genetic Diversity of Palm Weevils, Rhynchophorus Species (Coleoptera: Curculionidae) by Mitochondrial COI Gene Sequences Declares a New Species, R. bilineatus in Qassim, Saudi Arabia. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07104-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Montiel EE, Mora P, Rico-Porras JM, Palomeque T, Lorite P. Satellitome of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the Most Diverse Among Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.826808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The red palm weevil, Rhynchophorus ferrugineus, is the most harmful species among those pests affecting palm trees. Its impact causes important economic losses around the World. Nevertheless, the genetic information of Rh. ferrugineus is very scarce. Last year, the first genome assembly was published including a rough description of its repeatome. However, no information has been added about one of the main components of repeated DNA, the satellite DNA. Herein, we presented the characterization of the satellitome of this important species that includes 112 satellite DNA families, the largest number in an insect genome. These satellite DNA families made up around 25% of the genome while the most abundant family, RferSat01-169, alone represented 20.4%. Chromosomal location of most abundant satellite DNA families performed by fluorescence in situ hybridization showed that all of them are dispersed in the euchromatin on all chromosomes but some of them are also specifically accumulated either on the pericentromeric heterochromatic regions of all chromosomes or on specific chromosomes. Finally, the transcription of satellitome families was analyzed through Rh. ferrugineus development. It was found that 55 out of 112 satellite DNA families showed transcription, some families seemed to be transcribed across all stages while a few appeared to be stage-specific, indicating a possible role of those satellite DNA sequences in the development of this species.
Collapse
|
17
|
Bessette M, Ste‐Croix DT, Brodeur J, Mimee B, Gagnon A. Population genetic structure of the carrot weevil ( Listronotus oregonensis) in North America. Evol Appl 2022; 15:300-315. [PMID: 35233249 PMCID: PMC8867704 DOI: 10.1111/eva.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
Population genetic studies of insect pests enhance our ability to anticipate problems in agroecosystems, such as pest outbreaks, insecticide resistance, or expansions of the host range. This study focuses on geographic distance and host plant selection as potential determinants of genetic differentiation of the carrot weevil Listronotus oregonensis, a major pest of several apiaceous crops in North America. To undertake genetic studies on this species, we assembled the first complete genome sequence for L. oregonensis. Then, we used both haplotype discrimination with mitochondrial DNA (mtDNA) and a genotyping-by-sequencing (GBS) approach to characterize the genetic population structure. A total of 220 individuals were sampled from 17 localities in the provinces of Québec, Ontario, Nova Scotia (Canada), and the state of Ohio (USA). Our results showed significant genetic differences between distant populations across North America, indicating that geographic distance represents an important factor of differentiation for the carrot weevil. Furthermore, the GBS analysis revealed more different clusters than COI analysis between Québec and Nova Scotia populations, suggesting a recent differentiation in the latter province. In contrast, we found no clear evidence of population structure associated with the four cultivated apiaceous plants tested (carrot, parsley, celery, and celeriac) using populations from Québec. This first characterization of the genetic structure of the carrot weevil contributes to a better understanding of the gene flow of the species and helps to adapt local pest management measures to better control this agricultural pest.
Collapse
Affiliation(s)
- Marianne Bessette
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
- Département de sciences biologiquesInstitut de recherche en biologie végétaleUniversité de MontréalMontrealQCCanada
| | - Dave T. Ste‐Croix
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| | - Jacques Brodeur
- Département de sciences biologiquesInstitut de recherche en biologie végétaleUniversité de MontréalMontrealQCCanada
| | - Benjamin Mimee
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| | - Annie‐Ève Gagnon
- Saint‐Jean‐sur‐Richelieu Research and Development CentreAgriculture and Agri‐Food CanadaSaint‐Jean‐sur‐RichelieuQCCanada
| |
Collapse
|
18
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|