1
|
Naik HC, Chandel D, Majumdar S, Arava M, Baro R, Bv H, Hari K, Ayyamperumal P, Manhas A, Jolly MK, Gayen S. Lineage-specific dynamics of loss of X upregulation during inactive-X reactivation. Stem Cell Reports 2024; 19:1564-1582. [PMID: 39486405 PMCID: PMC11589478 DOI: 10.1016/j.stemcr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
In mammals, X chromosome dosage is balanced between sexes through the silencing of one X chromosome in females. Recent single-cell RNA sequencing analysis demonstrated that the inactivation of the X chromosome is accompanied by the upregulation of the active X chromosome (Xa) during mouse embryogenesis. Here, we have investigated if the reactivation of inactive-X (Xi) leads to the loss of Xa upregulation in different cellular or developmental contexts. We find that while Xi reactivation and loss of Xa upregulation are tightly coupled in mouse embryonic epiblast and induced pluripotent stem cells, that is not the case in germ cells. Moreover, we demonstrate that partial reactivation of Xi in mouse extra-embryonic endoderm stem cells and human B cells does not result in the loss of Xa upregulation. Finally, we have established a mathematical model for the transcriptional coordination of two X chromosomes. Together, we conclude that the reactivation of Xi is not always synchronized with the loss of Xa upregulation.
Collapse
Affiliation(s)
- Hemant Chandru Naik
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepshikha Chandel
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sudeshna Majumdar
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Maniteja Arava
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Runumi Baro
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Harshavardhan Bv
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Parichitran Ayyamperumal
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Avinchal Manhas
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Srimonta Gayen
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
3
|
Wei X, Fang X, Yu X, Li H, Guo Y, Qi Y, Sun C, Han D, Liu X, Li N, Hu H. Integrative analysis of single-cell embryo data reveals transcriptome signatures for the human pre-implantation inner cell mass. Dev Biol 2023; 502:39-49. [PMID: 37437860 DOI: 10.1016/j.ydbio.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
As the source of embryonic stem cells (ESCs), inner cell mass (ICM) can form all tissues of the embryo proper, however, its role in early human lineage specification remains controversial. Although a stepwise differentiation model has been proposed suggesting the existence of ICM as a distinct developmental stage, the underlying molecular mechanism remains unclear. In the present study, we perform an integrated analysis on the public human preimplantation embryonic single-cell transcriptomic data and apply a trajectory inference algorithm to measure the cell plasticity. In our results, ICM population can be clearly discriminated on the dimension-reduced graph and confirmed by compelling evidences, thus validating the two-step hypothesis of lineage commitment. According to the branch probabilities and differentiation potential, we determine the precise time points for two lineage segregations. Further analysis on gene expression dynamics and regulatory network indicates that transcription factors including GSC, PRDM1, and SPIC may underlie the decisions of ICM fate. In addition, new human ICM marker genes, such as EPHA4 and CCR8 are discovered and validated by immunofluorescence. Given the potential clinical applications of ESCs, our analysis provides a further understanding of human ICM cells and facilitates the exploration of more unique characteristics in early human development.
Collapse
Affiliation(s)
- Xinshu Wei
- School of Medicine, South China University of Technology, Guangzhou, China; Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiang Fang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xiu Yu
- School of Medicine, Jiaying University, Meizhou, 514015, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yuyang Guo
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yifei Qi
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaonan Liu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Third Affiliatied Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Talon I, Janiszewski A, Theeuwes B, Lefevre T, Song J, Bervoets G, Vanheer L, De Geest N, Poovathingal S, Allsop R, Marine JC, Rambow F, Voet T, Pasque V. Enhanced chromatin accessibility contributes to X chromosome dosage compensation in mammals. Genome Biol 2021; 22:302. [PMID: 34724962 PMCID: PMC8558763 DOI: 10.1186/s13059-021-02518-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Precise gene dosage of the X chromosomes is critical for normal development and cellular function. In mice, XX female somatic cells show transcriptional X chromosome upregulation of their single active X chromosome, while the other X chromosome is inactive. Moreover, the inactive X chromosome is reactivated during development in the inner cell mass and in germ cells through X chromosome reactivation, which can be studied in vitro by reprogramming of somatic cells to pluripotency. How chromatin processes and gene regulatory networks evolved to regulate X chromosome dosage in the somatic state and during X chromosome reactivation remains unclear. RESULTS Using genome-wide approaches, allele-specific ATAC-seq and single-cell RNA-seq, in female embryonic fibroblasts and during reprogramming to pluripotency, we show that chromatin accessibility on the upregulated mammalian active X chromosome is increased compared to autosomes. We further show that increased accessibility on the active X chromosome is erased by reprogramming, accompanied by erasure of transcriptional X chromosome upregulation and the loss of increased transcriptional burst frequency. In addition, we characterize gene regulatory networks during reprogramming and X chromosome reactivation, revealing changes in regulatory states. Our data show that ZFP42/REX1, a pluripotency-associated gene that evolved specifically in placental mammals, targets multiple X-linked genes, suggesting an evolutionary link between ZFP42/REX1, X chromosome reactivation, and pluripotency. CONCLUSIONS Our data reveal the existence of intrinsic compensatory mechanisms that involve modulation of chromatin accessibility to counteract X-to-Autosome gene dosage imbalances caused by evolutionary or in vitro X chromosome loss and X chromosome inactivation in mammalian cells.
Collapse
Affiliation(s)
- Irene Talon
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Bart Theeuwes
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Thomas Lefevre
- Laboratory of Reproductive Genomics, Centre for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Juan Song
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Vanheer
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Suresh Poovathingal
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Ryan Allsop
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Jean-Christophe Marine
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory of Reproductive Genomics, Centre for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| |
Collapse
|