1
|
Figueiredo MJ, Venâncio C, Cardoso P, Marques PAAP, Figueira E, Pires A. Potential advantage of invasive estuarine worms over native species under exposure to relevant concentrations of graphene oxide: Behavioral and biochemical insights. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106821. [PMID: 39489023 DOI: 10.1016/j.marenvres.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Technological development using graphene oxide (GO) has increased in the last years, leading to the release of this contaminant to final sinks, such as estuaries. Due to their potential to flocculate and deposit when interacting with high ionic strength media, GO poses a threat, especially to benthic organisms like polychaetes. In addition to chemical contamination, estuaries also face a severe threat from invasive species, which can cause irreversible damage to ecosystems. The combination of abiotic and biotic stressors may work together on native species, decreasing their resilience. Thus, this study aims to assess the effects of an abiotic stressor, GO nanosheets (0.001, 0.01, 0.1, 1, 10 mg GO/Kg dw) on Hediste diversicolor (native species) and Arenicola marina (invasive species) through several behavioral assays and biochemical markers. The impact of invasive species A. marina (biotic factor) on H. diversicolor avoidance behavior was also evaluated. Obtained results demonstrated that H. diversicolor fled from lower GO contamination compartments to higher ones and that exposure to increased GO concentrations negatively impacted its burrowing activity. They were unable to escape from higher contamination compartments, but at the highest concentrations, the bioturbation activity was significantly higher, which may indicate that H. diversicolor tended to dwell deeper in the sediment. A. marina showed an escape behavior from compartments with higher GO concentrations. Additionally, this species' bioturbation activity significantly decreased when exposed to GO. Moreover, avoidance tests demonstrated that the presence of A. marina affected the behavior of H. diversicolor. Regarding oxidative stress, H. diversicolor seems to be more impacted than A. marina, since Lipid peroxidation levels were higher in all GO concentrations and Superoxide dismutase activity significantly increased in the lowest GO levels. Overall, H. diversicolor spatial distribution may be severely constrained under abiotic and biotic stress, while A. marina's higher foraging activity may promote its propagation in the estuary. Behavioral tests, combined with biochemical markers have shown to be relevant tools for the development of more environmental-realistic assessment and monitoring frameworks for estuaries.
Collapse
Affiliation(s)
- Maria João Figueiredo
- Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Cátia Venâncio
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo Cardoso
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA) & Department of Mechanics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Jordà-Molina È, Renaud PE, Silberberger MJ, Sen A, Bluhm BA, Carroll ML, Ambrose WG, Cottier F, Reiss H. Seafloor warm water temperature anomalies impact benthic macrofauna communities of a high-Arctic cold-water fjord. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106046. [PMID: 37295307 DOI: 10.1016/j.marenvres.2023.106046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Amid the alarming atmospheric and oceanic warming rates taking place in the Arctic, western fjords around the Svalbard archipelago are experiencing an increased frequency of warm water intrusions in recent decades, causing ecological shifts in their ecosystems. However, hardly anything is known about their potential impacts on the until recently considered stable and colder northern fjords. We analyzed macrobenthic fauna from four locations in Rijpfjorden (a high-Arctic fjord in the north of Svalbard) along its axis, sampled intermittently in the years 2003, 2007, 2010, 2013 and 2017. After a strong seafloor warm water temperature anomaly (SfWWTA) in 2006, the abundance of individuals and species richness dropped significantly across the entire fjord in 2007, together with diversity declines at the outer parts (reflected in Shannon index drops) and increases in beta diversity between inner and outer parts of the fjord. After a period of three years with stable water temperatures and higher sea-ice cover, communities recovered through recolonization processes by 2010, leading to homogenization in community composition across the fjord and less beta diversity. For the last two periods (2010-2013 and 2013-2017), beta diversity between the inner and outer parts gradually increased again, and both the inner and outer sites started to re-assemble in different directions. A few taxa began to dominate the fjord from 2010 onwards at the outer parts, translating into evenness and diversity drops. The inner basin, however, although experiencing strong shifts in abundances, was partially protected by a fjordic sill from impacts of these temperature anomalies and remained comparatively more stable regarding community diversity after the disturbance event. Our results indicate that although shifts in abundances were behind important spatio-temporal community fluctuations, beta diversity variations were also driven by the occurrence-based macrofauna data, suggesting an important role of rare taxa. This is the first multidecadal time series of soft-bottom macrobenthic communities for a high-Arctic fjord, indicating that potential periodic marine heatwaves might drive shifts in community structure, either through direct effects from thermal stress on the communities or through changes in environmental regimes led by temperature fluctuations (i.e. sea ice cover and glacial runoff, which could lead to shifts in primary production and food supply to the benthos). Although high-Arctic macrobenthic communities might be resilient to some extent, sustained warm water anomalies could lead to permanent changes in cold-water fjordic benthic systems.
Collapse
Affiliation(s)
- Èric Jordà-Molina
- Nord University, Faculty of Biosciences and Aquaculture, 8049, Bodø, Norway.
| | - Paul E Renaud
- Akvaplan-niva, Fram Centre for Climate and Environment, N-9296, Tromsø, Norway; University Centre in Svalbard (UNIS), Longyearbyen, N-9170, Norway
| | - Marc J Silberberger
- Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Arunima Sen
- Nord University, Faculty of Biosciences and Aquaculture, 8049, Bodø, Norway; University Centre in Svalbard (UNIS), Longyearbyen, N-9170, Norway
| | - Bodil A Bluhm
- UiT - the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Michael L Carroll
- Akvaplan-niva, Fram Centre for Climate and Environment, N-9296, Tromsø, Norway
| | - William G Ambrose
- Office of Polar Programs, Antarctic Organisms and Ecosystems, National Science Foundation, 2415 Eisenhower Ave, Alexandria, Virginia, 22314, USA
| | - Finlo Cottier
- UiT - the Arctic University of Norway, N-9037, Tromsø, Norway; Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - Henning Reiss
- Nord University, Faculty of Biosciences and Aquaculture, 8049, Bodø, Norway
| |
Collapse
|
3
|
Kauppi L, Villnäs A. Marine heatwaves of differing intensities lead to distinct patterns in seafloor functioning. Proc Biol Sci 2022; 289:20221159. [DOI: 10.1098/rspb.2022.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Marine heatwaves (MHWs) are increasing in frequency and intensity due to climate change. Several well-documented effects of heatwaves on community structure exist, but examples of their effect on functioning of species, communities or ecosystems remain scarce. We tested the effects of short-term, moderate and strong MHWs on macrofauna bioturbation and associated solute fluxes as examples of ecosystem functioning. We also measured macrofaunal excretion rates to assess effects of temperature on macrofauna metabolism. For this experiment, we used unmanipulated sediment cores with natural animal communities collected from a muddy location at 32 m depth in the northern Baltic Sea. Despite the mechanistic effect of bioturbation remaining unchanged between the treatments, there were significant differences in oxygen consumption, solute fluxes and excretion. Biogeochemical and biological processes were boosted by the moderate heatwave, whereas biogeochemical cycling seemed to decrease under a strong heatwave. A prolonged, moderate heatwave could possibly lead to resource depletion if primary production cannot meet the demands of benthic consumption. By contrast, decreased degradation activities under strong heatwaves could lead to a build-up of organic material and potentially hypoxia. The strong variability and the complexity of the response highlight the context dependency of these processes complicating future predictions.
Collapse
Affiliation(s)
- Laura Kauppi
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Anna Villnäs
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
- Baltic Sea Centre, Stockholm University, Stockholm 114 19, Sweden
| |
Collapse
|