1
|
Hong MG, Khemiri L, Guterstam J, Franck J, Jayaram-Lindström N, Melas PA. Genetic liability for anxiety and treatment response to the monoamine stabilizer OSU6162 in alcohol dependence: a retrospective secondary analysis. Pharmacol Rep 2025; 77:840-849. [PMID: 40069537 PMCID: PMC12066376 DOI: 10.1007/s43440-025-00707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND OSU6162, a monoamine stabilizer, has demonstrated efficacy in reducing alcohol and anxiety-related behaviors in preclinical settings. In a previous randomized, double-blind, placebo-controlled trial involving patients with alcohol dependence (AD), OSU6162 significantly reduced craving for alcohol but did not alter drinking behaviors. This retrospective secondary analysis explores whether genetic predispositions related to AD and associated traits might influence the response to OSU6162 treatment in original trial participants. METHODS Polygenic risk scores (PRSs) were calculated for 48 AD patients using PRSice-2 and genome-wide association study (GWAS) data for (i) alcohol use disorder and alcohol consumption, (ii) problematic alcohol use, (iii) drinks per week, (iv) major depression, and (v) anxiety (case-control comparisons and quantitative anxiety factor scores). Linear regression analyses, adjusted for population stratification, assessed interaction effects between PRSs and treatment type (OSU6162 or placebo) on various clinical outcomes. RESULTS Significant interactions were found between treatment type and anxiety factor score PRS at the genome-wide significance threshold. In the OSU6162-treated group, a higher anxiety PRS was associated with reductions in the number of drinks consumed (FDR = 0.0017), percentage of heavy drinking days (FDR = 0.0060), and percentage of drinking days (FDR = 0.0017), with a trend toward reduced blood phosphatidylethanol (PEth) levels (FDR = 0.068). These associations were absent in the placebo group. CONCLUSIONS These preliminary findings suggest that anxiety PRS may help predict response to OSU6162 treatment in AD. Further research with larger cohorts and more comprehensive genetic data is needed to confirm these results and advance personalized medicine approaches for alcohol use disorder.
Collapse
Affiliation(s)
- Mun-Gwan Hong
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, 17121, Sweden
| | - Lotfi Khemiri
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, 11364, Sweden
| | - Joar Guterstam
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, 11364, Sweden
| | - Johan Franck
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, 11364, Sweden
| | - Nitya Jayaram-Lindström
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, 11364, Sweden
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, 11364, Sweden.
- L8:01, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
2
|
Lucido MJ, Dunlop BW. Emerging Medications for Treatment-Resistant Depression: A Review with Perspective on Mechanisms and Challenges. Brain Sci 2025; 15:161. [PMID: 40002494 PMCID: PMC11853532 DOI: 10.3390/brainsci15020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Non-response to initial treatment options for major depressive disorder (MDD) is a common clinical challenge with profound deleterious impacts for affected patients. Few treatments have received regulatory approval for treatment-resistant depression (TRD). Methods: A systematic search of United States and European Union clinical trials registries was conducted to identify Phase II, III, or IV clinical trials, with a last update posted on or after 1 January 2020, that were evaluating medications for TRD. For both the US and EU registries, the condition term "treatment resistant depression" and associated lower-level terms (per registry search protocol) were used. For the US registry, a secondary search using the condition term "depressive disorders" and the modifying term "inadequate" was also performed to capture registrations not tagged as TRD. Two additional searches were also conducted in the US registry for the terms "suicide" and "anhedonia" as transdiagnostic targets of investigational medications. Trials were categorized based on the primary mechanism of action of the trial's investigational medication. Results: Fifty clinical trials for TRD, 20 for anhedonia, and 25 for suicide were identified. Glutamate system modulation was the mechanism currently with the most compounds in development, including antagonists and allosteric modulators of NMDA receptors, AMPA receptors, metabotropic type 2/3 glutamate receptors, and intracellular effector molecules downstream of glutamate signaling. Psychedelics have seen the greatest surge among mechanistic targets in the past 5 years, however, with psilocybin in particular garnering significant attention. Other mechanisms included GABA modulators, monoamine modulators, anti-inflammatory/immune-modulating agents, and an orexin type 2 receptor antagonist. Conclusions: These investigations offer substantial promise for more efficacious and potentially personalized medication approaches for TRD. Challenges for detecting efficacy in TRD include the heterogeneity within the TRD population stemming from the presumed variety of biological dysfunctions underlying the disorder, comorbid disorders, chronic psychosocial stressors, and enduring effects of prior serotonergic antidepressant medication treatments.
Collapse
Affiliation(s)
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
3
|
Nishida K, Osaka H, Kanazawa T. Development progress of drugs for bipolar disorder: 75 Years after lithium proved effective. J Psychiatr Res 2024; 180:177-182. [PMID: 39427446 DOI: 10.1016/j.jpsychires.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Bipolar disorder, a psychiatric condition identified by significant mood changes and a considerable genetic connection with schizophrenia, needs continuous and extensive management due to its common onset in adolescence and significant impact on psychosocial activities. While traditional mood stabilizers continue to be widely used, the pursuit of more effective treatments remains ongoing, with the current research targeting various stages of the disorder. This study provides a thorough examination of new pharmacological treatments for bipolar disorder, which are currently in Phase II and Phase III clinical trials up to 22 April 2024. A systematic search was conducted using the NIH National Library of Medicine, focusing on both repurposed and innovative drugs now in advanced stages of testing. The study identifies several promising therapeutic agents, including those intended for severe mood disorders with suicidal tendencies, and others aimed at treating mood-related neuroinflammation. Drugs that enhance dopamine stabilization and those that act on serotonin receptor activities were found notable. We also explored the strategic repurposing of already existing medications for broader therapeutic uses and looked into the potential of new formulations designed for the immediate management of symptoms. Our analysis highlights two main strategies for tackling bipolar disorder: finding new uses for existing drugs and developing new medications with unique actions. This approach shows continuous improvement in drug treatments, helping patients manage their condition better and addressing the complicated nature of bipolar disorder.
Collapse
Affiliation(s)
- Keiichiro Nishida
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Hitoshi Osaka
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tetsufumi Kanazawa
- Department of Neuropsychiatry, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
4
|
Goutaudier R, Joly F, Mallet D, Bartolomucci M, Guicherd D, Carcenac C, Vossier F, Dufourd T, Boulet S, Deransart C, Chovelon B, Carnicella S. Hypodopaminergic state of the nigrostriatal pathway drives compulsive alcohol use. Mol Psychiatry 2023; 28:463-474. [PMID: 36376463 PMCID: PMC9812783 DOI: 10.1038/s41380-022-01848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
The neurobiological mechanisms underlying compulsive alcohol use, a cardinal feature of alcohol use disorder, remain elusive. The key modulator of motivational processes, dopamine (DA), is suspected to play an important role in this pathology, but its exact role remains to be determined. Here, we found that rats expressing compulsive-like alcohol use, operationalized as punishment-resistant self-administration, showed a decrease in DA levels restricted to the dorsolateral territories of the striatum, the main output structure of the nigrostriatal DA pathway. We then causally demonstrated that chemogenetic-induced selective hypodopaminergia of this pathway resulted in compulsive-like alcohol self-administration in otherwise resilient rats, accompanied by the emergence of alcohol withdrawal-like motivational impairments (i.e., impaired motivation for a natural reinforcer). Finally, the use of the monoamine stabilizer OSU6162, previously reported to correct hypodopaminergic states, transiently decreased compulsive-like alcohol self-administration in vulnerable rats. These results suggest a potential critical role of tonic nigrostriatal hypodopaminergic states in alcohol addiction and provide new insights into our understanding of the neurobiological mechanisms underlying compulsive alcohol use.
Collapse
Affiliation(s)
- Raphaël Goutaudier
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fanny Joly
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - David Mallet
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Magali Bartolomucci
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Denis Guicherd
- grid.410529.b0000 0001 0792 4829Service de Biochimie, Biologie Moléculaire, Toxicologie Environnementale, CHU de Grenoble-Alpes Site Nord − Institut de Biologie et de Pathologie, F-38041 Grenoble, France
| | - Carole Carcenac
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frédérique Vossier
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Thibault Dufourd
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sabrina Boulet
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Colin Deransart
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Benoit Chovelon
- grid.410529.b0000 0001 0792 4829Service de Biochimie, Biologie Moléculaire, Toxicologie Environnementale, CHU de Grenoble-Alpes Site Nord − Institut de Biologie et de Pathologie, F-38041 Grenoble, France ,grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Sebastien Carnicella
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
5
|
Fredriksson I, Jayaram-Lindström N, Kalivas PW, Melas PA, Steensland P. N-acetylcysteine improves impulse control and attenuates relapse-like alcohol intake in long-term drinking rats. Behav Brain Res 2022; 436:114089. [PMID: 36063970 DOI: 10.1016/j.bbr.2022.114089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Increasing evidence suggests that individuals with alcohol use disorder (AUD) present with a disrupted glutamatergic system that underlies core components of addictive disorders, including drug relapse and low impulse control. N-acetylcysteine (NAC) is a cystine prodrug that has been found to promote glutamate homeostasis and drug abstinence. However, no studies to date have evaluated NAC's effect on impulsivity in substance use disorders. Here we determined whether NAC would decrease alcohol-intake behaviors, in addition to improving impulse control, in long-term alcohol drinking male Wistar-Han rats. Before the start of the experiments, all rats were exposed to long-term intermittent access to 20% ethanol for at least seven weeks. Next, in different groups of rats, the effect of NAC (60 and/or 90mg/kg) was evaluated on (i) voluntary alcohol drinking using a two-bottle free choice paradigm, (ii) the motivation to self-administer alcohol under a progressive ratio schedule of reinforcement, and (iii) relapse-like drinking using the alcohol deprivation effect model. Finally, (iv) NAC's effect on impulse control was evaluated using the five-choice serial reaction time task. Results showed that NAC administration at 90mg/kg significantly reduced relapse-like drinking and improved impulse control. In contrast, NAC had no effect on levels of alcohol drinking or motivation to drink alcohol. In conclusion, our findings continue to support the use of NAC as an adjuvant treatment for the maintenance of abstinence in AUD. Moreover, we provide evidence for NAC's efficacy in improving impulse control following drinking, which warrants further investigation in substance use settings.
Collapse
Affiliation(s)
- Ida Fredriksson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| | - Nitya Jayaram-Lindström
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Ralph Johnson Veterans Administration, Charleston, SC, USA
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden; Center for Molecular Medicine, L8:00, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Pia Steensland
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| |
Collapse
|