1
|
Laso Garcia A, Yang L, Bouffetier V, Appel K, Baehtz C, Hagemann J, Höppner H, Humphries O, Kluge T, Mishchenko M, Nakatsutsumi M, Pelka A, Preston TR, Randolph L, Zastrau U, Cowan TE, Huang L, Toncian T. Cylindrical compression of thin wires by irradiation with a Joule-class short-pulse laser. Nat Commun 2024; 15:7896. [PMID: 39266548 PMCID: PMC11392940 DOI: 10.1038/s41467-024-52232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Equation of state measurements at Jovian or stellar conditions are currently conducted by dynamic shock compression driven by multi-kilojoule multi-beam nanosecond-duration lasers. These experiments require precise design of the target and specific tailoring of the spatial and temporal laser profiles to reach the highest pressures. At the same time, the studies are limited by the low repetition rate of the lasers. Here, we show that by the irradiation of a thin wire with single-beam Joule-class short-pulse laser, a converging cylindrical shock is generated compressing the wire material to conditions relevant to the above applications. The shockwave was observed using Phase Contrast Imaging employing a hard X-ray Free Electron Laser with unprecedented temporal and spatial sensitivity. The data collected for Cu wires is in agreement with hydrodynamic simulations of an ablative shock launched by highly impulsive and transient resistive heating of the wire surface. The subsequent cylindrical shockwave travels toward the wire axis and is predicted to reach a compression factor of 9 and pressures above 800 Mbar. Simulations for astrophysical relevant materials underline the potential of this compression technique as a new tool for high energy density studies at high repetition rates.
Collapse
Affiliation(s)
- Alejandro Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Long Yang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Karen Appel
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Johannes Hagemann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 86, Hamburg, 22607, Germany
| | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Lisa Randolph
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Technische Universität Dresden, Dresden, 01062, Germany
| | - Lingen Huang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| |
Collapse
|
2
|
Heuser B, Bergermann A, Stevenson MG, Ranjan D, He Z, Lütgert J, Schumacher S, Bethkenhagen M, Descamps A, Galtier E, Gleason AE, Khaghani D, Glenn GD, Cunningham EF, Glenzer SH, Hartley NJ, Hernandez JA, Humphries OS, Katagiri K, Lee HJ, McBride EE, Miyanishi K, Nagler B, Ofori-Okai B, Ozaki N, Pandolfi S, Qu C, May PT, Redmer R, Schoenwaelder C, Sueda K, Yabuuchi T, Yabashi M, Lukic B, Rack A, Zinta LMV, Vinci T, Benuzzi-Mounaix A, Ravasio A, Kraus D. Release dynamics of nanodiamonds created by laser-driven shock-compression of polyethylene terephthalate. Sci Rep 2024; 14:12239. [PMID: 38806565 PMCID: PMC11133328 DOI: 10.1038/s41598-024-62367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Laser-driven dynamic compression experiments of plastic materials have found surprisingly fast formation of nanodiamonds (ND) via X-ray probing. This mechanism is relevant for planetary models, but could also open efficient synthesis routes for tailored NDs. We investigate the release mechanics of compressed NDs by molecular dynamics simulation of the isotropic expansion of finite size diamond from different P-T states. Analysing the structural integrity along different release paths via molecular dynamic simulations, we found substantial disintegration rates upon shock release, increasing with the on-Hugnoiot shock temperature. We also find that recrystallization can occur after the expansion and hence during the release, depending on subsequent cooling mechanisms. Our study suggests higher ND recovery rates from off-Hugoniot states, e.g., via double-shocks, due to faster cooling. Laser-driven shock compression experiments of polyethylene terephthalate (PET) samples with in situ X-ray probing at the simulated conditions found diamond signal that persists up to 11 ns after breakout. In the diffraction pattern, we observed peak shifts, which we attribute to thermal expansion of the NDs and thus a total release of pressure, which indicates the stability of the released NDs.
Collapse
Affiliation(s)
- Ben Heuser
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany.
| | - Armin Bergermann
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Michael G Stevenson
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Divyanshu Ranjan
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany
| | - Zhiyu He
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
- China Academy of Engineering Physics, Shanghai Institute of Laser Plasma, Shanghai, 201800, China
| | - Julian Lütgert
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Samuel Schumacher
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Mandy Bethkenhagen
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Adrien Descamps
- School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Dimitri Khaghani
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Griffin D Glenn
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Jean-Alexis Hernandez
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
- The Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, 0371, Norway
| | - Oliver S Humphries
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany
- European XFEL, Schenefeld, 22869, Germany
| | - Kento Katagiri
- Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Emma E McBride
- School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | | | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka, 565-0087, Japan
| | - Silvia Pandolfi
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Muséum National d'Histoire Naturelle, UMR CNRS 7590, 75005, Paris, France
| | - Chongbing Qu
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Philipp Thomas May
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | | | | | - Toshinori Yabuuchi
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
| | - Bratislav Lukic
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Alexander Rack
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble, France
| | - Lisa M V Zinta
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
| | - Tommaso Vinci
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Alessandra Benuzzi-Mounaix
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Alessandra Ravasio
- LULI, CNRS, CEA, Ecole Polytechnique-Institut Polytechnique de Paris, Sorbonne Université, Palaiseau, 91128, France
| | - Dominik Kraus
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059, Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, 01328, Germany
| |
Collapse
|
3
|
Moldabekov ZA, Lokamani M, Vorberger J, Cangi A, Dornheim T. Assessing the accuracy of hybrid exchange-correlation functionals for the density response of warm dense electrons. J Chem Phys 2023; 158:094105. [PMID: 36889956 DOI: 10.1063/5.0135729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We assess the accuracy of common hybrid exchange-correlation (XC) functionals (PBE0, PBE0-1/3, HSE06, HSE03, and B3LYP) within the Kohn-Sham density functional theory for the harmonically perturbed electron gas at parameters relevant for the challenging conditions of the warm dense matter. Generated by laser-induced compression and heating in the laboratory, the warm dense matter is a state of matter that also occurs in white dwarfs and planetary interiors. We consider both weak and strong degrees of density inhomogeneity induced by the external field at various wavenumbers. We perform an error analysis by comparing with the exact quantum Monte Carlo results. In the case of a weak perturbation, we report the static linear density response function and the static XC kernel at a metallic density for both the degenerate ground-state limit and for partial degeneracy at the electronic Fermi temperature. Overall, we observe an improvement in the density response when the PBE0, PBE0-1/3, HSE06, and HSE03 functionals are used, compared with the previously reported results for the PBE, PBEsol, local-density approximation, and AM05 functionals; B3LYP, on the other hand, does not perform well for the considered system. Additionally, the PBE0, PBE0-1/3, HSE06, and HSE03 functionals are more accurate for the density response properties than SCAN in the regime of partial degeneracy.
Collapse
Affiliation(s)
- Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Mani Lokamani
- Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Insitute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| |
Collapse
|
4
|
Celliers PM, Millot M. Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:011101. [PMID: 36725591 DOI: 10.1063/5.0123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Two variants of optical imaging velocimetry, specifically the one-dimensional streaked line-imaging and the two-dimensional time-resolved area-imaging versions of the Velocity Interferometer System for Any Reflector (VISAR), have become important diagnostics in high energy density sciences, including inertial confinement fusion and dynamic compression of condensed matter. Here, we give a brief review of the historical development of these techniques, then describe the current implementations at major high energy density (HED) facilities worldwide, including the OMEGA Laser Facility and the National Ignition Facility. We illustrate the versatility and power of these techniques by reviewing diverse applications of imaging VISARs for gas-gun and laser-driven dynamic compression experiments for materials science, shock physics, condensed matter physics, chemical physics, plasma physics, planetary science and astronomy, as well as a broad range of HED experiments and laser-driven inertial confinement fusion research.
Collapse
Affiliation(s)
- Peter M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Marius Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
5
|
He Z, Rödel M, Lütgert J, Bergermann A, Bethkenhagen M, Chekrygina D, Cowan TE, Descamps A, French M, Galtier E, Gleason AE, Glenn GD, Glenzer SH, Inubushi Y, Hartley NJ, Hernandez JA, Heuser B, Humphries OS, Kamimura N, Katagiri K, Khaghani D, Lee HJ, McBride EE, Miyanishi K, Nagler B, Ofori-Okai B, Ozaki N, Pandolfi S, Qu C, Ranjan D, Redmer R, Schoenwaelder C, Schuster AK, Stevenson MG, Sueda K, Togashi T, Vinci T, Voigt K, Vorberger J, Yabashi M, Yabuuchi T, Zinta LMV, Ravasio A, Kraus D. Diamond formation kinetics in shock-compressed C─H─O samples recorded by small-angle x-ray scattering and x-ray diffraction. SCIENCE ADVANCES 2022; 8:eabo0617. [PMID: 36054354 PMCID: PMC10848955 DOI: 10.1126/sciadv.abo0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Extreme conditions inside ice giants such as Uranus and Neptune can result in peculiar chemistry and structural transitions, e.g., the precipitation of diamonds or superionic water, as so far experimentally observed only for pure C─H and H2O systems, respectively. Here, we investigate a stoichiometric mixture of C and H2O by shock-compressing polyethylene terephthalate (PET) plastics and performing in situ x-ray probing. We observe diamond formation at pressures between 72 ± 7 and 125 ± 13 GPa at temperatures ranging from ~3500 to ~6000 K. Combining x-ray diffraction and small-angle x-ray scattering, we access the kinetics of this exotic reaction. The observed demixing of C and H2O suggests that diamond precipitation inside the ice giants is enhanced by oxygen, which can lead to isolated water and thus the formation of superionic structures relevant to the planets' magnetic fields. Moreover, our measurements indicate a way of producing nanodiamonds by simple laser-driven shock compression of cheap PET plastics.
Collapse
Affiliation(s)
- Zhiyu He
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Shanghai Institute of Laser Plasma, 201800 Shanghai, China
| | - Melanie Rödel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Julian Lütgert
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Armin Bergermann
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Mandy Bethkenhagen
- École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon, LGLTPE UMR 5276, Centre Blaise Pascal, 46 allée d’Italie, Lyon 69364, France
| | - Deniza Chekrygina
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas E. Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Adrien Descamps
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Martin French
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Griffin D. Glenn
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Stanford University, Stanford, CA 94305, USA
| | | | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | - Jean-Alexis Hernandez
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Benjamin Heuser
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oliver S. Humphries
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Nobuki Kamimura
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Katagiri
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Emma E. McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Kohei Miyanishi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Silvia Pandolfi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chongbing Qu
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Divyanshu Ranjan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Christopher Schoenwaelder
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen Nürnberg, Erwin-Rommel-Str 1, 91058 Erlangen, Germany
| | - Anja K. Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Michael G. Stevenson
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Keiichi Sueda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tommaso Vinci
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique–Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Katja Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01069 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshinori Yabuuchi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Lisa M. V. Zinta
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Alessandra Ravasio
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique–Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Dominik Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
6
|
Gurniak EJ, Tiwari SC, Hong S, Nakano A, Kalia RK, Vashishta P, Branicio PS. Anisotropic atomistic shock response mechanisms of aramid crystals. J Chem Phys 2022; 157:044105. [PMID: 35922358 DOI: 10.1063/5.0102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aramid fibers composed of poly(p-phenylene terephthalamide) (PPTA) polymers are attractive materials due to their high strength, low weight, and high shock resilience. Even though they have widely been utilized as a basic ingredient in Kevlar, Twaron, and other fabrics and applications, their intrinsic behavior under intense shock loading is still to be understood. In this work, we characterize the anisotropic shock response of PPTA crystals by performing reactive molecular dynamics simulations. Results from shock loading along the two perpendicular directions to the polymer backbones, [100] and [010], indicate distinct shock release mechanisms that preserve and destroy the hydrogen bond network. Shocks along the [100] direction for particle velocity Up < 2.46 km/s indicate the formation of a plastic regime composed of shear bands, where the PPTA structure is planarized. Shocks along the [010] direction for particle velocity Up < 2.18 km/s indicate a complex response regime, where elastic compression shifts to amorphization as the shock is intensified. While hydrogen bonds are mostly preserved for shocks along the [100] direction, hydrogen bonds are continuously destroyed with the amorphization of the crystal for shocks along the [010] direction. Decomposition of the polymer chains by cross-linking is triggered at the threshold particle velocity Up = 2.18 km/s for the [010] direction and Up = 2.46 km/s for the [100] direction. These atomistic insights based on large-scale simulations highlight the intricate and anisotropic mechanisms underpinning the shock response of PPTA polymers and are expected to support the enhancement of their applications.
Collapse
Affiliation(s)
- Emily J Gurniak
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242, USA
| | - Subodh C Tiwari
- Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0242, USA
| | - Sungwook Hong
- Department of Physics and Engineering, California State University, Bakersfield, Bakersfield, California 93311, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0242, USA
| | - Rajiv K Kalia
- Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0242, USA
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0242, USA
| | - Paulo S Branicio
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242, USA
| |
Collapse
|
7
|
Moldabekov Z, Vorberger J, Dornheim T. Density Functional Theory Perspective on the Nonlinear Response of Correlated Electrons across Temperature Regimes. J Chem Theory Comput 2022; 18:2900-2912. [PMID: 35484932 PMCID: PMC9097288 DOI: 10.1021/acs.jctc.2c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/28/2022]
Abstract
We explore a new formalism to study the nonlinear electronic density response based on Kohn-Sham density functional theory (KS-DFT) at partially and strongly quantum degenerate regimes. It is demonstrated that the KS-DFT calculations are able to accurately reproduce the available path integral Monte Carlo simulation results at temperatures relevant for warm dense matter research. The existing analytical results for the quadratic and cubic response functions are rigorously tested. It is demonstrated that the analytical results for the quadratic response function closely agree with the KS-DFT data. Furthermore, the performed analysis reveals that currently available analytical formulas for the cubic response function are not able to describe simulation results, neither qualitatively nor quantitatively, at small wavenumbers q < 2qF, with qF being the Fermi wavenumber. The results show that KS-DFT can be used to describe warm dense matter that is strongly perturbed by an external field with remarkable accuracy. Furthermore, it is demonstrated that KS-DFT constitutes a valuable tool to guide the development of the nonlinear response theory of correlated quantum electrons from ambient to extreme conditions. This opens up new avenues to study nonlinear effects in a gamut of different contexts at conditions that cannot be accessed with previously used path integral Monte Carlo methods.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center
for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|