1
|
Riseh RS, Fathi F, Vazvani MG, Tarkka MT. Plant Colonization by Biocontrol Bacteria and Improved Plant Health: A Review. FRONT BIOSCI-LANDMRK 2025; 30:23223. [PMID: 39862070 DOI: 10.31083/fbl23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control. The present review deals with the in-depth understanding of steps involved in host colonization by biocontrol bacteria. The colonization process starts from the root zone, where biocontrol bacteria establish initial interactions with the plant's root system. Moving beyond the roots, biocontrol bacteria migrate and colonize other plant organs, including stems, leaves, and even flowers. Also, the present review attempts to explore the mechanisms facilitating bacterial movement within the plant such as migrating through interconnected spaces such as vessels or in the apoplast, and applying quorum sensing or extracellular enzymes during colonization and what is needed to establish a long-term association within a plant. The impacts on microbial community dynamics, nutrient cycling, and overall plant health are discussed, emphasizing the intricate relationships between biocontrol bacteria and the plant's microbiome and the benefits to the plant's above-ground parts, the biocontrol 40 bacteria confer. By unraveling these mechanisms, researchers can develop targeted strategies for enhancing the colonization efficiency and overall effectiveness of biocontrol bacteria, leading to more sustainability and resilience.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mika Tapio Tarkka
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
| |
Collapse
|
2
|
Keppler A, Roulier M, Pfeilmeier S, Petti GC, Sintsova A, Maier BA, Bortfeld-Miller M, Sunagawa S, Zipfel C, Vorholt JA. Plant microbiota feedbacks through dose-responsive expression of general non-self response genes. NATURE PLANTS 2025; 11:74-89. [PMID: 39627368 PMCID: PMC11757152 DOI: 10.1038/s41477-024-01856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/22/2024] [Indexed: 01/25/2025]
Abstract
The ability of plants to perceive and react to biotic and abiotic stresses is critical for their health. We recently identified a core set of genes consistently induced by members of the leaf microbiota, termed general non-self response (GNSR) genes. Here we show that GNSR components conversely impact leaf microbiota composition. Specific strains that benefited from this altered assembly triggered strong plant responses, suggesting that the GNSR is a dynamic system that modulates colonization by certain strains. Examination of the GNSR to live and inactivated bacteria revealed that bacterial abundance, cellular composition and exposure time collectively determine the extent of the host response. We link the GNSR to pattern-triggered immunity, as diverse microbe- or danger-associated molecular patterns cause dynamic GNSR gene expression. Our findings suggest that the GNSR is the result of a dose-responsive perception and signalling system that feeds back to the leaf microbiota and contributes to the intricate balance of plant-microbiome interactions.
Collapse
Affiliation(s)
| | | | | | | | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
3
|
Abbasi MW, Hussain N, Tariq M, Qasim M, Wei Q, Guo J, Yang S, Dong R, Abideen Z, El-Sheikh MA. Combination of Biogas Residues and Bacillus Interactions Stimulates Crop Production and Salinity Tolerance in Sorghum bicolor. SCIENTIFICA 2024; 2024:2123395. [PMID: 39697622 PMCID: PMC11655139 DOI: 10.1155/sci5/2123395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Stress tolerance in cereal crops like Sorghum is important to address food security and land development for saline agriculture. Salinity is considered one of the most devastating abiotic stresses affecting plant growth and yield, specifically in water-scared areas of the world. Biogas residue is a good source of plant nutrients with enriched fertilizer for crop yield and productivity. In this study, seeds were sown in the soil supplied with biogas residues (0% and 5% w/w). After seedling establishment, three Bacillus strains (B26, BS, and BSER) were introduced around the roots of Sorghum. Saline water irrigation started after a week of bacterial inoculation. Sorghum plants were uprooted after 30 days of saline water irrigation. Results indicated that the Bacillus strain and biogas residues showed the highest plant growth in both (0 and 75 mM) salinity levels. Further, this Bacillus strain modulated Sorghum's secondary metabolites (phenols and flavonoids) and osmoprotectants (proline and soluble sugars) under salinity stress. Reduction in salinity stress demonstrated lower activities of antioxidant enzymes including catalase, ascorbate peroxidase, and superoxide dismutase; however, guaiacol peroxidase activities were enhanced in Bacillus (BS strain) treated plants with biogas residues application. Among the three strains, BS strain demonstrated better results with biogas residues under salinity stress in Sorghum bicolor.
Collapse
Affiliation(s)
- Muhammad Waseem Abbasi
- Department of Botany, University of Karachi, Karachi 75270, Pakistan
- Yantai Institute, China Agricultural University, Yantai 264670, Shandong, China
| | - Naveed Hussain
- Department of Botany, University of Karachi, Karachi 75270, Pakistan
| | - Marium Tariq
- M.A.H. Qadri Biological Research Centre, University of Karachi, Karachi 75270, Pakistan
- Department of Agricultural Engineering, China Agricultural University, Qinghua Donglu 17, Haidian District, Beijing 100083, China
| | - Muhammad Qasim
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Qu Wei
- Yantai Institute, China Agricultural University, Yantai 264670, Shandong, China
| | - Jianbin Guo
- Department of Agricultural Engineering, China Agricultural University, Qinghua Donglu 17, Haidian District, Beijing 100083, China
| | - Shoujun Yang
- Yantai Institute, China Agricultural University, Yantai 264670, Shandong, China
| | - Renjie Dong
- Department of Agricultural Engineering, China Agricultural University, Qinghua Donglu 17, Haidian District, Beijing 100083, China
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
- College of Agriculture, University of Al Dhaid, P. O. Box 27272, Sharjah, UAE
| | - Mohamed A. El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
5
|
Serrão CP, Ortega JCG, Rodrigues PC, de Souza CRB. Bacillus species as tools for biocontrol of plant diseases: A meta-analysis of twenty-two years of research, 2000-2021. World J Microbiol Biotechnol 2024; 40:110. [PMID: 38411743 DOI: 10.1007/s11274-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The traditional way of dealing with plant diseases has been the use of chemical products, but these harm the environment and are incompatible with the global effort for sustainable development. The use of Bacillus and related species in the biological control of plant diseases is a trend in green agriculture. Many studies report the positive effect of these bacteria, but a synthesis is still necessary. So, the objective of this work is to perform a meta-analysis of Bacillus biocontrol potential and identify factors that drive its efficacy. Data were compiled from articles published in journals listed in two of the main scientific databases between 2000 and 2021. Among 6159 articles retrieved, 399 research papers met the inclusion criteria for a systematic review. Overall, Bacilli biocontrol agents reduced disease by 60% compared to control groups. Furthermore, experimental tests with higher concentrations show a strong protective effect, unlike low and single concentration essays. Biocontrol efficacy also increased when used as a protective inoculation rather than therapeutic inoculation. Inoculation directly in the fruit has a greater effect than soil drenching. The size of the effect of Bacillus-based commercial products is lower than the newly tested strains. The findings presented in this study confirm the power of Bacillus-based bioinoculants and provide valuable guidance for practitioners, researchers, and policymakers seeking effective and sustainable solutions in plant disease management.
Collapse
Affiliation(s)
- Cleyson Pantoja Serrão
- Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, CEP 66075-110, PA, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFPA, Belém, CEP 66075-110, PA, Brazil
| | | | - Paulo Canas Rodrigues
- Departamento de Estatística, Universidade Federal da Bahia (UFBA), Salvador, CEP 40170-110, BA, Brazil
| | | |
Collapse
|
6
|
Wan Y, Xiao Q, Xiao X, Huang Y, Liu S, Feng W, Liu T, Ren Z, Ren W, Luo X, Luo S. Response of tomatoes to inactivated endophyte LSE01 under combined stress of high-temperature and drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108321. [PMID: 38181639 DOI: 10.1016/j.plaphy.2023.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Endophytes can assist crops in adapting to high temperatures and drought conditions, thereby reducing agricultural losses. However, the mechanism through which endophytes regulate crop resistance to high temperatures and drought stress remains unclear, and concerns regarding safety and stability exist with active endophytes. Thus, heat-treated endophytic bacteria LSE01 (HTB) were employed as a novel microbial fertilizer to investigate their effects on plant adaptation to high temperatures and drought conditions. The results indicated that the diameter and weight of tomatoes treated with HTB under stress conditions increased by 23.04% and 71.15%, respectively, compared to the control. Tomato yield did not significantly decrease compared to non-stress conditions. Additionally, the contents of vitamin C, soluble sugars, and proteins treated with HTB increased by 18.81%, 11.54%, and 99.75%, respectively. Mechanistic research revealed that HTB treatment enhances tomato's stress resistance by elevating photosynthetic pigment and proline contents, enhancing antioxidant enzyme activities, and reducing the accumulation of MDA. Molecular biology research demonstrates that HTB treatment upregulates the expression of drought-resistant genes (GA2ox7, USP1, SlNAC3, SlNAC4), leading to modifications in stomatal conductance, plant morphology, photosynthetic intensity, and antioxidant enzyme synthesis to facilitate adaptation to dry conditions. Furthermore, the upregulation of the heat-resistant gene (SlCathB2-2) can increases the thickness of tomato cell walls, rendering them less vulnerable to heat stress. In summary, HTB endows tomatoes with the ability to adapt to high temperatures and drought conditions, providing new opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Qicheng Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Shiqi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Weiran Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhong Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| |
Collapse
|
7
|
Patani A, Patel M, Islam S, Yadav VK, Prajapati D, Yadav AN, Sahoo DK, Patel A. Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience. World J Microbiol Biotechnol 2024; 40:77. [PMID: 38253986 DOI: 10.1007/s11274-024-03903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The Bacillus genus has emerged as an important player in modern agriculture, revolutionizing plant growth promotion through recent advances. This review provides a comprehensive overview of the critical role Bacillus species play in boosting plant growth and agricultural sustainability. Bacillus genus bacteria benefit plants in a variety of ways, according to new research. Nitrogen fixation, phosphate solubilization, siderophore production, and the production of growth hormones are examples of these. Bacillus species are also well-known for their ability to act as biocontrol agents, reducing phytopathogens and protecting plants from disease. Molecular biology advances have increased our understanding of the complex interplay between Bacillus species and plants, shedding light on the genetic and metabolic underpinnings of these interactions. Furthermore, novel biotechnology techniques have enabled the development of Bacillus-based biofertilizers and biopesticides, providing sustainable alternatives to conventional chemical inputs. Apart from this, the combination of biochar and Bacillus species in current biotechnology is critical for improving soil fertility and encouraging sustainable agriculture through enhanced nutrient retention and plant growth. This review also emphasizes the Bacillus genus bacteria's ability to alleviate environmental abiotic stresses such as drought and salinity, hence contributing to climate-resilient agriculture. Moreover, the authors discuss the challenges and prospects associated with the practical application of Bacillus-based solutions in the field. Finally, recent advances in Bacillus-mediated plant growth promotion highlight their critical significance in sustainable agriculture. Understanding these improvements is critical for realizing the full potential of Bacillus genus microorganisms to address current global food production concerns.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Shaikhul Islam
- Plant Pathology Division, Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. KSG Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| |
Collapse
|
8
|
Augustine SM, Tzigos S, Snowdon R. Heat-Killed Tobacco Mosaic Virus Mitigates Plant Abiotic Stress Symptoms. Microorganisms 2022; 11:87. [PMID: 36677379 PMCID: PMC9862074 DOI: 10.3390/microorganisms11010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Since the discovery of the tobacco mosaic virus in the 1890s, awareness has grown in regard to how viruses affect the environment. Viral infections are now known to cause various effects besides pathogenicity, with some viruses in fact having a beneficial impact on plants. Although research has focused on disease-causing viruses that can infect plants, many wild plants are also infected with non-pathogenic viral agents. Traditionally, abiotic, and biotic stresses have been studied as isolated stimuli that trigger signaling pathways within the plant. However, both biotic and abiotic stress can trigger complex molecular interactions within plants, which in turn drive interconnected response pathways. Here, we demonstrate that heat-killed tobacco mosaic virus (TMV) can increase abiotic stress tolerance in plants, an effect that could potentially be implemented in challenging growth environments. To our knowledge, this is the first report of plant abiotic stress tolerance following treatment with heat-killed viral particles.
Collapse
Affiliation(s)
- Sruthy Maria Augustine
- Department of Plant Breeding, IFZ Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff Ring 26, 35392 Giessen, Germany
| | | | | |
Collapse
|
9
|
Kamran M, Imran QM, Ahmed MB, Falak N, Khatoon A, Yun BW. Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells 2022; 11:cells11203292. [PMID: 36291157 PMCID: PMC9600683 DOI: 10.3390/cells11203292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil fertility, and health. These stresses may have significant financial repercussions, necessitating a practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants. Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant health and protection; however, these chemical supplements have serious implications for human health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it is important to experimentally validate these interactions and determine how they affect plant fitness. This review highlights research that sheds light on how endophytes help plants tolerate biotic and abiotic stresses through plant–symbiont and plant–microbiota interactions. There is a great need to focus research efforts on this vital area to achieve a system-level understanding of plant–microbe interactions that occur naturally.
Collapse
Affiliation(s)
- Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
- Correspondence: (M.K.); (B.-W.Y.)
| | - Qari Muhammad Imran
- Department of Medical Biochemistry & Biophysics, Umea University, 90187 Umea, Sweden
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Noreen Falak
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Amna Khatoon
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.K.); (B.-W.Y.)
| |
Collapse
|
10
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
11
|
Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:930340. [PMID: 36082294 PMCID: PMC9445558 DOI: 10.3389/fpls.2022.930340] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/21/2022] [Indexed: 05/09/2023]
Abstract
With the increase in world population, the demography of humans is estimated to be exceeded and it has become a major challenge to provide an adequate amount of food, feed, and agricultural products majorly in developing countries. The use of chemical fertilizers causes the plant to grow efficiently and rapidly to meet the food demand. The drawbacks of using a higher quantity of chemical or synthetic fertilizers are environmental pollution, persistent changes in the soil ecology, physiochemical composition, decreasing agricultural productivity and cause several health hazards. Climatic factors are responsible for enhancing abiotic stress on crops, resulting in reduced agricultural productivity. There are various types of abiotic and biotic stress factors like soil salinity, drought, wind, improper temperature, heavy metals, waterlogging, and different weeds and phytopathogens like bacteria, viruses, fungi, and nematodes which attack plants, reducing crop productivity and quality. There is a shift toward the use of biofertilizers due to all these facts, which provide nutrition through natural processes like zinc, potassium and phosphorus solubilization, nitrogen fixation, production of hormones, siderophore, various hydrolytic enzymes and protect the plant from different plant pathogens and stress conditions. They provide the nutrition in adequate amount that is sufficient for healthy crop development to fulfill the demand of the increasing population worldwide, eco-friendly and economically convenient. This review will focus on biofertilizers and their mechanisms of action, role in crop productivity and in biotic/abiotic stress tolerance.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Shivani Singh
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Anuj Chaudhary
- School of Agriculture and Environmental Science, Shobhit University, Gangoh, India
| | - Anita Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Govind Kumar
- Department of Crop Production, Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
12
|
Endophytic bacterium Bacillus aryabhattai induces novel transcriptomic changes to stimulate plant growth. PLoS One 2022; 17:e0272500. [PMID: 35921359 PMCID: PMC9348713 DOI: 10.1371/journal.pone.0272500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
In nature, plants interact with a wide range of microorganisms, and most of these microorganisms could induce growth through the activation of important molecular pathways. The current study evaluated whether the endophytic bacterium Bacillus aryabhattai encourages plant growth and the transcriptional changes that might be implicated in this effect. The endophytic bacterium promotes the growth of Arabidopsis and tobacco plants. The transcriptional changes in Arabidopsis plants treated with the bacterium were also identified, and the results showed that various genes, such as cinnamyl alcohol dehydrogenase, apyrase, thioredoxin H8, benzaldehyde dehydrogenase, indoleacetaldoxime dehydratase, berberine bridge enzyme-like and gibberellin-regulated protein, were highly expressed. Also, endophytic bacterial genes, such as arginine decarboxylase, D-hydantoinase, ATP synthase gamma chain and 2-hydroxyhexa-2,4-dienoate hydratase, were activated during the interaction. These findings demonstrate that the expression of novel plant growth-related genes is induced by interaction with the endophytic bacterium B. aryabhattai and that these changes may promote plant growth in sustainable agriculture.
Collapse
|
13
|
Safara S, Harighi B, Bahramnejad B, Ahmadi S. Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. Front Microbiol 2022; 13:921762. [PMID: 35722285 PMCID: PMC9201493 DOI: 10.3389/fmicb.2022.921762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence.
Collapse
Affiliation(s)
- Somayeh Safara
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Bahman Bahramnejad
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Slahadin Ahmadi
- Department of Medical Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
14
|
Impact of Pseudomonas sp. SVB-B33 on Stress- and Cell Wall-Related Genes in Roots and Leaves of Hemp under Salinity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salinity is a type of abiotic stress that negatively affects plant growth and development. Textile hemp (Cannabis sativa L.) is an important multi-purpose crop that shows sensitivity to salt stress in a genotype- and developmental stage-dependent manner. The root and shoot biomasses decrease in the presence of NaCl during vegetative growth and several stress-responsive genes are activated. Finding environmentally friendly ways to increase plant health and resilience to exogenous stresses is important for a sustainable agriculture. In this context, the use of beneficial bacteria, collectively referred to as plant growth-promoting bacteria (PGPB), is becoming an attractive and emergent agricultural strategy. In this study, data are provided on the effects of a Pseudomonas isolate (Pseudomonas sp. SVB-B33) phylogenetically closely related to P. psychrotolerans applied via roots to salt-stressed hemp. The application of both living and dead bacteria impacts the fresh weight of the root biomass, as well as the expression of several stress-related genes in roots and leaves. These results pave the way to future investigations on the use of Pseudomonas sp. SVB-B33 in combination with silica to mitigate stress symptoms and increase the resilience to other forms of exogenous stresses in textile hemp.
Collapse
|