1
|
Zhou S, Zhang Y, Liu S, Peng C, Shang J, Tian J, Li X, Liu F, Jiang W, Liu H. Pathogenicity of Novel H3 Avian Influenza Viruses in Chickens and Development of a Promising Vaccine. Viruses 2025; 17:288. [PMID: 40143220 PMCID: PMC11946779 DOI: 10.3390/v17030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/28/2025] Open
Abstract
Since 2022, three cases of human infections of novel H3N8 avian influenza viruses (AIVs) have been confirmed in China. Given the potential for significant public health implications, the prompt detection and containment of the virus is particularly important. Comprehensive analyses were conducted of the complete viral gene sequences of five H3 subtype AIVs that were isolated from chickens, pigeons, and geese in live poultry markets in China in 2023. Four strains exhibited a high degree of homology with the H3N8 viruses responsible for human infections in 2022 and 2023. A subsequent study was conducted to investigate the pathogenicity differences among multiple subtypes of the H3 AIVs in chickens. The study revealed that all infected chickens exhibited clinical signs and viral shedding. Notably, two H3N8 viruses, which were highly homologous to human strains, demonstrated significant differences in adaptability to chickens. The goose-derived H3N5 strain displayed high adaptability to chickens and could replicate in multiple organs, with the highest titer in the cloaca. Additionally, a potential vaccine strain, designated CK/NT308/H3N3, was successfully developed that provided complete clinical protection and effectively prevented viral shedding against both H3N3 and H3N8 viruses. In conclusion, CK/NT308/H3N3 presents a promising vaccine candidate.
Collapse
Affiliation(s)
- Shuning Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaxin Zhang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuo Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Cheng Peng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Jie Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
| | - Xiaoqi Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Hualei Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| |
Collapse
|
2
|
Chen Q, Xie J, Yu Q, Liu C, Ding W, Li X, Zhou H. An experimental study of acoustic bird repellents for reducing bird encroachment in pear orchards. FRONTIERS IN PLANT SCIENCE 2024; 15:1365275. [PMID: 39315369 PMCID: PMC11416946 DOI: 10.3389/fpls.2024.1365275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Bird invasion will reduce the yield of high-value crops, which threatens the healthy development of agricultural economy. Sonic bird repellent has the advantages of large range, no time and geographical restrictions, and low cost, which has attracted people's attention in the field of agriculture. At present, there are few studies on the application of sonic bird repellents in pear orchards to minimize economic losses and prolong the adaptive capacity of birds. In this paper, a sound wave bird repellent system based on computer vision is designed, which combines deep learning target recognition technology to accurately identify birds and drive them away. The neural network model that can recognize birds is first trained and deployed to the server. Live video is captured by an installed webcam, and the sonic bird repellent is powered by an ESP-8266 relay switch. In a pear orchard, two experimental areas were divided into two experimental areas to test the designed sonic bird repellent device, and the number of bad fruits pecked by birds was used as an indicator to evaluate the bird repelling effect. The results showed that the pear pecked fruit rate was 6.03% in the pear orchard area that used the acoustic bird repeller based on computer recognition, 7.29% in the pear orchard area of the control group that used the acoustic bird repeller with continuous operation, and 13.07% in the pear orchard area that did not use any bird repellent device. While acoustic bird repellers based on computer vision can be more effective at repelling birds, they can be used in combination with methods such as fruit bags to reduce the economic damage caused by birds.
Collapse
Affiliation(s)
- Qing Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Jingjing Xie
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Can Liu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Wenqin Ding
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Jingsu, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongping Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Chen YC, Chu JF, Hsieh KW, Lin TH, Chang PZ, Tsai YC. Automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. Sci Rep 2024; 14:15924. [PMID: 38987345 PMCID: PMC11237150 DOI: 10.1038/s41598-024-66920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Wild bird repulsion is critical in agriculture because it helps avoid agricultural food losses and mitigates the risk of avian influenza. Wild birds transmit avian influenza in poultry farms and thus cause large economic losses. In this study, we developed an automatic wild bird repellent system that is based on deep-learning-based wild bird detection and integrated with a laser rotation mechanism. When a wild bird appears at a farm, the proposed system detects the bird's position in an image captured by its detection unit and then uses a laser beam to repel the bird. The wild bird detection model of the proposed system was optimized for detecting small pixel targets, and trained through a deep learning method by using wild bird images captured at different farms. Various wild bird repulsion experiments were conducted using the proposed system at an outdoor duck farm in Yunlin, Taiwan. The statistical test results of our experimental data indicated that the proposed automatic wild bird repellent system effectively reduced the number of wild birds in the farm. The experimental results indicated that the developed system effectively repelled wild birds, with a high repulsion rate of 40.3% each day.
Collapse
Affiliation(s)
- Yu-Chieh Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106319, Taiwan
| | - Jing-Fang Chu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Kuang-Wen Hsieh
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung, 402202, Taiwan
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung, 402, Taiwan
| | - Tzung-Han Lin
- Graduate Institute of Color and Illumination Technology, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan
| | - Pei-Zen Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106319, Taiwan
| | - Yao-Chuan Tsai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung, 402202, Taiwan.
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung, 402, Taiwan.
| |
Collapse
|
4
|
de Vos CJ, Elbers ARW. Quantitative Risk Assessment of Wind-Supported Transmission of Highly Pathogenic Avian Influenza Virus to Dutch Poultry Farms via Fecal Particles from Infected Wild Birds in the Environment. Pathogens 2024; 13:571. [PMID: 39057798 PMCID: PMC11279698 DOI: 10.3390/pathogens13070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
A quantitative microbial risk assessment model was developed to estimate the probability that the aerosolization of fecal droppings from wild birds in the vicinity of poultry farms would result in the infection of indoor-housed poultry with highly pathogenic avian influenza virus (HPAIv) in the Netherlands. Model input parameters were sourced from the scientific literature and experimental data. The availability of data was diverse across input parameters, and especially parameters on the aerosolization of fecal droppings, survival of HPAIv and dispersal of aerosols were uncertain. Model results indicated that the daily probability of infection of a single poultry farm is very low, with a median value of 7.5 × 10-9. Accounting for the total number of poultry farms and the length of the bird-flu season, the median overall probability of at least one HPAIv-infected poultry farm during the bird-flu season is 2.2 × 10-3 (approximately once every 455 years). This is an overall estimate, averaged over different farm types, virus strains and wild bird species, and results indicate that uncertainty is relatively high. Based on these model results, we conclude that it is unlikely that this introduction route plays an important role in the occurrence of HPAIv outbreaks in indoor-housed poultry.
Collapse
Affiliation(s)
- Clazien J. de Vos
- Department of Epidemiology, Bioinformatics &Animal Models, Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| | | |
Collapse
|
5
|
Yu J, Yao Q, Liu J, Zhou Y, Huo M, Ge Y. Concern regarding H3-subtype avian influenza virus. Front Microbiol 2023; 14:1327470. [PMID: 38143863 PMCID: PMC10740181 DOI: 10.3389/fmicb.2023.1327470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The H3-subtype of avian influenza virus (AIV) is one of the most frequently detected low pathogenic avian influenza virus (LPAIV) subtypes in birds and fowls, causing substantial economic loss to the poultry industry. Most importantly, besides poultry, mammals could also be infected with it, such as swines, canines, equines, felines, and humans, posing a serious public health threat. This allows the virus to persist widely in poultry and wild birds for a long time, where it may mix with other subtypes, providing conditions for viral recombination or reassortment. Currently, the monitoring of H3-subtype AIV is inadequate, and there is a lack of effective prevention and control measures for H3-subtype AIV. Here, the epidemiology, phylogeny, and genetic variation of H3-subtype AIV were analyzed, and nonsynonymous and synonymous substitution rates (dN/dS) were calculated. Through these steps, we aimed to clarify the current epidemiological feature and evolutionary characteristics of H3-subtype AIV, and provide an operative reference for future scientific control of H3-subtype AIV.
Collapse
|
6
|
Bonnefous C, Collin A, Guilloteau LA, Guesdon V, Filliat C, Réhault-Godbert S, Rodenburg TB, Tuyttens FAM, Warin L, Steenfeldt S, Baldinger L, Re M, Ponzio R, Zuliani A, Venezia P, Väre M, Parrott P, Walley K, Niemi JK, Leterrier C. Welfare issues and potential solutions for laying hens in free range and organic production systems: A review based on literature and interviews. Front Vet Sci 2022; 9:952922. [PMID: 35990274 PMCID: PMC9390482 DOI: 10.3389/fvets.2022.952922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
In free-range and organic production systems, hens can make choices according to their needs and desires, which is in accordance with welfare definitions. Nonetheless, health and behavioral problems are also encountered in these systems. The aim of this article was to identify welfare challenges observed in these production systems in the EU and the most promising solutions to overcome these challenges. It is based on a review of published literature and research projects complemented by interviews with experts. We selected EU specific information for welfare problems, however, the selected literature regarding solutions is global. Free range use may increase the risk of infection by some bacteria, viruses and parasites. Preventive methods include avoiding contamination thanks to biosecurity measures and strengthening animals' natural defenses against these diseases which can be based on nutritional means with new diet components such as insect-derived products, probiotics and prebiotics. Phytotherapy and aromatherapy can be used as preventive and curative medicine and vaccines as alternatives to antibiotics and pesticides. Bone quality in pullets and hens prevents keel deviations and is favored by exercise in the outdoor range. Free range use also lead to higher exposure to variable weather conditions and predators, therefore shadow, fences and guard animals can be used to prevent heat stress and predation respectively. Granting a free range provides opportunities for the expression of many behaviors and yet many hens usually stay close to the house. Providing the birds with trees, shelters or attractive plants can increase range use. Small flock sizes, early experiences of enrichment and personality traits have also been found to enhance range use. Severe feather pecking can occur in free range production systems, although flocks using the outdoor area have better plumage than indoors. While many prevention strategies are facilitated in free range systems, the influence of genetics, prenatal and nutritional factors in free range hens still need to be investigated. This review provides information about practices that have been tested or still need to be explored and this information can be used by stakeholders and researchers to help them evaluate the applicability of these solutions for welfare improvement.
Collapse
Affiliation(s)
| | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, France
| | | | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | | | | - T. Bas Rodenburg
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank A. M. Tuyttens
- ILVO, Instituut voor Landbouw-, Visserij- en Voedingsonderzoek, Melle, Belgium
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Sanna Steenfeldt
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | | | - Martina Re
- AIAB, Associazone Italiana per l'Agricultura Biologica, Rome, Italy
| | | | - Anna Zuliani
- Veterinari Senza Frontiere Italia, Sede c/o Istituto Zooprofilattico Sperimentale delle Venezie viale dell'Università, Padova, Italy
| | - Pietro Venezia
- Veterinari Senza Frontiere Italia, Sede c/o Istituto Zooprofilattico Sperimentale delle Venezie viale dell'Università, Padova, Italy
| | - Minna Väre
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Helsinki, Finland
| | | | - Keith Walley
- Harper Adams University, Newport, United Kingdom
| | - Jarkko K. Niemi
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Seinäjoki, Finland
| | - Christine Leterrier
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- *Correspondence: Christine Leterrier
| |
Collapse
|
7
|
Le Gall-Ladevèze C, Guinat C, Fievet P, Vollot B, Guérin JL, Cappelle J, Le Loc'h G. Quantification and characterisation of commensal wild birds and their interactions with domestic ducks on a free-range farm in southwest France. Sci Rep 2022; 12:9764. [PMID: 35697735 PMCID: PMC9192735 DOI: 10.1038/s41598-022-13846-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The role of commensal birds in the epidemiology of pathogens in poultry farms remains unclear. Our study aimed to identify potential key species for interactions with domestic ducks on one free-range duck farm in southwest France. Methods combined direct individual observations on duck outdoor foraging areas, network analysis, and general linear mixed models of abundances. Results showed a wide diversity of wild bird species visiting foraging areas, heavily dominated in frequency by White wagtails (Motacilla alba) and Sparrows (Passer domesticus and Passer montanus). These also were the only species seen entering duck premises or perching on drinkers in the presence of ducks. Moreover, White wagtails were the species most frequently observed on the ground and in close proximity to ducks. Network analysis suggested the role of White wagtails and Sparrows in linking ducks to other wild birds on the farm. The abundance of White wagtails was positively associated with open vegetation, with the presence of ducks and particularly in the afternoon, while the abundance of Sparrows was positively associated only with the fall-winter season. By precisely characterising interactions, the study was able to identify few wild bird species which should be prioritized in infectious investigations at the interface with poultry.
Collapse
Affiliation(s)
| | - Claire Guinat
- Department of Biosystems Science and Engineering, ETHZürich, Mattenstrasse, Basel, Switzerland
- SIB, Lausanne, Switzerland
| | | | | | | | - Julien Cappelle
- ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR ASTRE, CIRAD, 34398, Montpellier, France
| | | |
Collapse
|