1
|
Gebretsadik KG, Liu Z, Yang J, Liu H, Qin A, Zhou Y, Guo E, Song X, Gao P, Xie Y, Vincent N, Tran LSP, Sun X. Plant-aphid interactions: recent trends in plant resistance to aphids. STRESS BIOLOGY 2025; 5:28. [PMID: 40299207 PMCID: PMC12041410 DOI: 10.1007/s44154-025-00214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 04/30/2025]
Abstract
Aphids are highly destructive agricultural pests characterized by complex life cycles and phenotypic variability, facilitating their adaptation to diverse climates and host plants. Their feeding behavior leads to plant deformation, wilting, stunted growth, disease transmission, and significant yield losses. Given the economic risks aphids pose, regular updates on their seasonal behaviors, adaptive mechanisms, and destructive activities are critical for improving management strategies to mitigate crop losses. This review comprehensively synthesizes recent studies on aphids as plant pests, the extrinsic factors influencing their life cycles, and the intricate interactions between aphids and their hosts. It also highlights recent advancements in biological control measures, including natural enemies, antibiosis, and antixenosis. Additionally, we explore plant defense mechanisms against aphids, focusing on the roles of cell wall components such as lignin, pectin and callose deposition and the genetic regulations underlying these defenses. Aphids, however, can evolve specialized strategies to overcome general plant defenses, prompting the development of targeted mechanisms in plants, such as the use of resistance (R) genes against specific aphid species. Additionally, plant pattern recognition receptors (PRRs) recognize compounds in aphid saliva, which triggers enhanced phloem sealing and more focused immune responses. This work enhances understanding of aphid-plant interaction and plant resistance and identifies key research gaps for future studies.
Collapse
Affiliation(s)
- Kifle Gebreegziabiher Gebretsadik
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
- Tigray Agricultural Research Institute (TARI), Mekelle, 5637, Ethiopia
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Jincheng Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Enzhi Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Xiao Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Peibo Gao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Yajie Xie
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Ninkuu Vincent
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China.
| |
Collapse
|
2
|
Kaler E, Nabukalu P, Murrell E, Cox S, Louis J. Utilizing genetic variation in perennial sorghum to improve host plant resistance to aphids. Sci Rep 2025; 15:13569. [PMID: 40253529 PMCID: PMC12009419 DOI: 10.1038/s41598-025-97746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
With growing concerns over the sustainability of conventional farming systems, perennial crops offer an environmentally friendly and resilient alternative for long-term agricultural production. Perennial grain crops provide numerous benefits, such as low input investment, reduced tillage, soil conservation, better carbon sequestration, sustainable yields, and enhanced biodiversity support. Sorghum (Sorghum bicolor) is the fifth most-grown cereal crop grown for food, fuel, and food grain in the world. The development of perennial sorghum offers a substitute for traditional annual sorghum crops by providing long-term environmental, economic, and agronomic benefits. Sugarcane aphid (SCA; Melanaphis sacchari), a phloem-feeder, is considered a major threat to sorghum production. Since its first report in 2013, it caused $40.95 million in losses in South Texas alone by 2015, accounting for about 19% of the total value of sorghum production in the region. In this study, we screened diverse perennial sorghum genotypes using no-choice and choice assays to determine their innate antibiosis and antixenosis resistance levels to SCAs. Based on aphid reproduction and plant damage rating, no-choice bioassay classified the 43 perennial sorghum genotypes into four clusters: highly susceptible, moderately susceptible, moderately resistant, and highly resistant. To further investigate the resistance mechanisms, we selected two genotypes, X999 > R485 (SCA-resistant) and PR376 ~ Tift241 (SCA-susceptible) that showed the greatest variation in resistance to SCA, for subsequent experiments. Choice bioassay results indicated that aphids chose PR376 ~ Tift241 for settlement, whereas no significant preference was observed for X999 > R485 compared to the control genotype. Electrical penetration graph (EPG) results demonstrated that aphids feeding on the SCA-resistant genotype spent significantly less time in the phloem phase than the susceptible genotype and control plants. The identification of SCA-resistant perennial sorghum genotypes will be valuable for future sorghum breeding programs in managing this economically important pest.
Collapse
Affiliation(s)
- Esha Kaler
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | | | | | - Stan Cox
- The Land Institute, Salina, KS, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
3
|
Qonaah IA, Simon AL, Warner D, Rostron RM, Bruce TJA, Ray RV. Rapid screening for resistance to Sitobion avenae (F.) and Rhopalosiphum padi (L.) in winter wheat seedlings and selection of efficient assessment methods. PEST MANAGEMENT SCIENCE 2025; 81:819-830. [PMID: 39425459 PMCID: PMC11716336 DOI: 10.1002/ps.8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Sitobion avenae (F.) and Rhopalosiphum padi (L.) are harmful pests of wheat [Triticum aestivum (L.)]. No genetic resistance against the aphids has been identified in commercial wheat varieties and resistance phenotyping can be time-consuming and laborious. Here, we tested a high-throughput phenotyping method to screen 29 commercial winter wheat varieties for alate antixenosis and antibiosis. We validated this method using comprehensive behavioural analyses, including alate attraction to volatile organic compounds (VOCs) and a feeding bioassay using an electrical penetration graph (EPG), subsequently highlighting possible sources of resistance. RESULTS We observed differences in alate behaviour upon assessing alate settlement on wheat seedlings and attraction towards VOCs, revealing the importance of visual and early post-alighting cues for alate host selection. Aphid settlement was four times higher on the most preferred variety than on the least preferred variety. Using an EPG bioassay, we identified phloem feeding and stylet derailment parameters linked to resistance. We found antibiosis assessment on detached leaves to be an inadequate screen because it produced results inconsistent with intact leaves assessment. Alate and nymph mortality were identified as key traits signifying antibiosis, showing significant positive relationships with alate reproduction and nymph mean relative growth rate. CONCLUSIONS Overall, antixenosis and antibiosis varietal responses were consistent for both aphid species. Alate settlement on wheat seedlings was a more efficient antixenosis screen than an olfactometer assay using VOCs. In addition to assessing alate and nymph survival for antibiosis, this allows for more rapid phenotyping of large numbers of genotypes to identify novel aphid resistance genes for varietal improvement. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ilma A Qonaah
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | - Amma L Simon
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | - Rosanna M Rostron
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| | | | - Rumiana V Ray
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton BoningtonUK
| |
Collapse
|
4
|
Borg AN, Vuts J, Caulfield JC, Withall DM, Foulkes MJ, Birkett MA. Characterisation of aphid antixenosis in aphid-resistant ancestor wheat, Triticum monococcum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39152728 DOI: 10.1002/ps.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Due to the increasing presence of insecticide resistance across cereal aphid populations, new aphid management strategies, including the engineering of host resistance to aphids into commercial wheat varieties, are required. Previous studies have identified ancestor wheat, Triticum monococcum accessions MDR045 and MDR049, with resistance against the grain aphid, Sitobion avenae. To test the hypothesis that resistance can be accounted for by antixenosis (reduced attractiveness of host plants) via the release of repellent volatile organic compounds (VOCs), we explored the response of S. avenae to MDR045 and MDR049 following S. avenae herbivory, using behaviour and electrophysiology experiments. RESULTS In four-arm olfactometry assays, alate S. avenae showed aphid density-dependent reduced preference to VOC extracts from T. monococcum MDR045 and MDR049. By contrast, alate S. avenae showed aphid density-dependent increased preference to extracts from aphid-susceptible hexaploid wheat, Triticum aestivum var. Solstice and T. monococcum MDR037. Coupled gas chromatography-electroantennography (GC-EAG), using the antennae of alate S. avenae, located 24 electrophysiologically active compounds across all tested accessions. Synthetic blends created from 21 identified EAG-active compounds confirmed bioactivity of corresponding VOC extracts in four-arm olfactometry assays against alate S. avenae. CONCLUSION Our data suggest that resistance of T. monococcum MDR045 and MDR049 to S. avenae can be at least partially accounted for by antixenosis through antennal perception of specific repellent VOC blends induced by S. avenae feeding behaviour. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander N Borg
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - John C Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - David M Withall
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - M John Foulkes
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
5
|
Guiré R, Shah NA, Meda RN, Ghafoor H, Haq IU, Salo P, Yaseen A, Al-Asmari F, Zongo E, Ramadan MF, Rizvi SAH, Turi SH. Insecticidal Activities of Securidaca longepedunculata Fresen Extracts and Feeding Behavior of Schizaphis graminum Rondani: Electropenetrography Approach. ACS OMEGA 2024; 9:32799-32806. [PMID: 39100282 PMCID: PMC11292658 DOI: 10.1021/acsomega.4c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024]
Abstract
The aphid, Schizaphis graminum Rondani (Hemiptera: Aphididae), is one of the most destructive pests of wheat. It is responsible for significant economic losses in the agricultural sector, with an estimated 45% of wheat fields affected. Plant-based insecticides have seen a rapid increase in popularity in recent years due to their efficacy, cost-effectiveness, biodegradability, and lower toxicity compared to synthetic pesticides. The study aimed to evaluate the toxic potential of S. longipedunculata extracts against S. graminum and investigate the insect's feeding behavior on wheat. Initially macerated in methanol, the different extracts of S. longipedunculata organs were fractionated using n-hexane, chloroform, ethyl acetate, and butanol. The feeding behavior was analyzed by comparing the waveforms generated by the EPG with the control. After 72 h of treatment, the ethyl acetate fraction extracted from root had the highest toxicity against aphids, with mean 26 mortality of S. graminum at LC50 of 330 ppm; 25 mortality S. graminum at LC50 of 400 ppm for leaves; and mean 24.5 mortality S. graminum at LC50 of 540 ppm in stem bark. EPG analysis indicated that the extract fractions enhanced plant tissue resistance by significantly preventing aphid access to the phloem. The toxic effect of the botanical extracts significantly enhanced the chemical composition of the leaf medium, resulting in a drastic reduction in the number of tissue attacks by S. graminum. In summary, besides their toxicity to S. graminum, extracts of S. longipedunculata reinforce the plant's defense mechanisms, significantly reducing the S. graminum population. They also reinforce wheat's defense mechanisms. S. longipedunculata can, therefore, be used as a promising agent in the biological control of S. graminum.
Collapse
Affiliation(s)
- Rasmané Guiré
- Laboratory
of Research and Teaching in Animal Health and Biotechnology, Nazi Boni University, Bobo-Dioulasso 1091, Burkina Faso
| | - Naseer Ali Shah
- Department
of Biosciences, COMSTATS University Islamabad, Islamabad 45550, Pakistan
| | - Roland N.T Meda
- Laboratory
of Research and Teaching in Animal Health and Biotechnology, Nazi Boni University, Bobo-Dioulasso 1091, Burkina Faso
| | - Hina Ghafoor
- Department
of Biosciences, COMSTATS University Islamabad, Islamabad 45550, Pakistan
| | - Ihsan Ul Haq
- Insect
Pest Management Program, Institute of Plant and Environmental Protection, National Agriculture Research Centre, Islamabad 45652, Pakistan
| | - Pousbila Salo
- Laboratory
of Research and Teaching in Animal Health and Biotechnology, Nazi Boni University, Bobo-Dioulasso 1091, Burkina Faso
| | - Aqsa Yaseen
- Insect
Pest Management Program, Institute of Plant and Environmental Protection, National Agriculture Research Centre, Islamabad 45652, Pakistan
| | - Fahad Al-Asmari
- Department
of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Eliasse Zongo
- Laboratory
of Research and Teaching in Animal Health and Biotechnology, Nazi Boni University, Bobo-Dioulasso 1091, Burkina Faso
| | - Mohamed Fawzy Ramadan
- Department
of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Syed Arif Hussain Rizvi
- College of
Agriculture, South China Agricultural University, Guangzhou 510642, China
- Pmas-Arid
Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | | |
Collapse
|
6
|
Peirce ES, Evers B, Winn ZJ, Raupp WJ, Guttieri M, Fritz AK, Poland J, Akhunov E, Haley S, Mason E, Nachappa P. Identifying novel sources of resistance to wheat stem sawfly in five wild wheat species. PEST MANAGEMENT SCIENCE 2024; 80:2976-2990. [PMID: 38318926 DOI: 10.1002/ps.8008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The wheat stem sawfly (WSS, Cephus cinctus) is a major pest of wheat (Triticum aestivum) and can cause significant yield losses. WSS damage results from stem boring and/or cutting, leading to the lodging of wheat plants. Although solid-stem wheat genotypes can effectively reduce larval survival, they may have lower yields than hollow-stem genotypes and show inconsistent solidness expression. Because of limited resistance sources to WSS, evaluating diverse wheat germplasm for novel resistance genes is crucial. We evaluated 91 accessions across five wild wheat species (Triticum monococcum, T. urartu, T. turgidum, T. timopheevii, and Aegilops tauschii) and common wheat cultivars (T. aestivum) for antixenosis (host selection) and antibiosis (host suitability) to WSS. Host selection was measured as the number of eggs after adult oviposition, and host suitability was determined by examining the presence or absence of larval infestation within the stem. The plants were grown in the greenhouse and brought to the field for WSS infestation. In addition, a phylogenetic analysis was performed to determine the relationship between the WSS traits and phylogenetic clustering. RESULTS Overall, Ae. tauschii, T. turgidum and T. urartu had lower egg counts and larval infestation than T. monococcum, and T. timopheevii. T. monococcum, T. timopheevii, T. turgidum, and T. urartu had lower larval weights compared with T. aestivum. CONCLUSION This study shows that wild relatives of wheat could be a valuable source of alleles for enhancing resistance to WSS and identifies specific germplasm resources that may be useful for breeding. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika S Peirce
- Rangeland Resources and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Zachary J Winn
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - W John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Throckmorton Hall, Kansas Wheat Innovation Center, Manhattan, KS, USA
| | - Mary Guttieri
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Allan K Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- King Abdullah University of Science and Technology, Center for Desert Agriculture, KAUST Thuwal, Kingdom of Saudi Arabia
| | - Eduard Akhunov
- Wheat Genetics Resource Center and Department of Plant Pathology, Throckmorton Hall, Kansas Wheat Innovation Center, Manhattan, KS, USA
| | - Scott Haley
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Esten Mason
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Zulfiqar S, Ishfaq S, Raza Bukhari SA, Sajjad M, Akhtar M, Liu D, Rahman MU. New genetic resources for aphid resistance were identified from a newly developed wheat mutant library. Heliyon 2024; 10:e26529. [PMID: 38444497 PMCID: PMC10912258 DOI: 10.1016/j.heliyon.2024.e26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Reports on development of resilient wheat mutants to aphid infestation-causing heavy losses to wheat production in many parts of the world, are scanty. The present study aimed to identify genetic diversity of wheat mutants in terms of varying degree of resistance to aphid infestation which can help protect wheat crop, improve yields and enhance food security. Resistance response to aphid infestation was studied on newly developed 33 wheat mutants, developed through irradiating seed of an elite wheat cultivar "Punjab-11" with gamma radiations, during three normal growing seasons at two sites. Data on various traits including aphid count per plant, biochemical traits, physiological traits and grain yield was recorded. Meteorological data was also collected to unravel the impact of environmental conditions on aphid infestation on wheat plants. Minimum average aphid infestation was found on Pb-M-2725, Pb-M-2550, and Pb-M-2719 as compared to the wild type. High yielding mutants Pb-M-1323, Pb-M-59, and Pb-M-1272 supported the moderate aphid infestation. The prevailing temperature up to 25 °C showed positive correlation (0.25) with aphid count. Among biochemical traits, POD (0.34), TSP (0.33), TFA (0.324) exhibited a high positive correlation with aphid count. In addition, CAT (0.31), TSS (0.294), and proline content (0.293) also showed a positive correlation with aphid count. However, all physiological traits depicted negative correlation with aphid count, while, a very weak correlation (0.12) was found between mean aphid count and grain yield. In PCA biplots, the biochemical variables clustered together with aphid count, while physiological variables grouped with grain yield. Biochemical parameters contributed most, towards first dimension of the PCA (48.6%) as compared to the physiological variables (13%). The FAMD revealed that mutant lines were major contributor towards total variation; Pb-M-1027, Pb-M-1323, Pb-M-59 were found to be the most diverse lines. The PCA revealed that biochemical parameters played a significant role in explaining variations in aphid resistance, emphasizing their importance in aphid defense mechanisms. The identified mutants can be utilized by the international wheat community for getting insight into the molecular circuits of resistant mechanism against aphids as well as for designing new KASP markers. This study also highlights the importance of considering both genetic and environmental factors in the development of resilient wheat varieties and pave the way for further investigations into the molecular mechanisms underpinning aphid resistance in wheat.
Collapse
Affiliation(s)
- Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Shumila Ishfaq
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Punjab, Pakistan
| | | | - Muhammad Sajjad
- Department of Biosciences, COMSATS University, Islamabad, Islamabad, Pakistan
| | - Muhammad Akhtar
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agriculture University, Baoding 071000, Hebei, China
| | - Mehboob-ur Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| |
Collapse
|
8
|
Leybourne DJ, Aradottir GI. Common resistance mechanisms are deployed by plants against sap-feeding herbivorous insects: insights from a meta-analysis and systematic review. Sci Rep 2022; 12:17836. [PMID: 36284143 PMCID: PMC9596439 DOI: 10.1038/s41598-022-20741-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/19/2022] [Indexed: 01/20/2023] Open
Abstract
Despite their abundance and economic importance, the mechanism of plant resistance to sap-feeding insects remains poorly understood. Here we deploy meta-analysis and data synthesis methods to evaluate the results from electrophysiological studies describing feeding behaviour experiments where resistance mechanisms were identified, focussing on studies describing host-plant resistance and non-host resistance mechanisms. Data were extracted from 108 studies, comprising 41 insect species across eight insect taxa and 12 host-plant families representing over 30 species. Results demonstrate that mechanisms deployed by resistant plants have common consequences on the feeding behaviour of diverse insect groups. We show that insects feeding on resistant plants take longer to establish a feeding site and have their feeding duration suppressed two-fold compared with insects feeding on susceptible plants. Our results reveal that traits contributing towards resistant phenotypes are conserved across plant families, deployed against taxonomically diverse insect groups, and that the underlying resistance mechanisms are conserved. These findings provide a new insight into plant-insect interaction and highlight the need for further mechanistic studies across diverse taxa.
Collapse
Affiliation(s)
- D. J. Leybourne
- grid.9122.80000 0001 2163 2777Zoological Biodiversity, Institute of Geobotany, Leibniz University of Hannover, 30167 Hannover, Germany
| | - G. I. Aradottir
- grid.17595.3f0000 0004 0383 6532Department of Plant Pathology and Entomology, NIAB, Cambridge, CB3 0LE UK
| |
Collapse
|
9
|
Screening and Evaluation for Antixenosis Resistance in Wheat Accessions and Varieties to Grain Aphid, Sitobion miscanthi (Takahashi) (Hemiptera: Aphididae). PLANTS 2022; 11:plants11081094. [PMID: 35448823 PMCID: PMC9031254 DOI: 10.3390/plants11081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
The grain aphid, Sitobion miscanthi causes serious damage by removing nutritional content from wheat plants and transmitting viral diseases. The use of resistant wheat cultivars is an effective method of aphid management. To identify S. miscanthi resistant cultivars, preliminary antixenosis resistance screening was conducted on 112 Ethiopian and 21 Chinese wheat accessions and varieties along with bioassay to test for further antixenosis resistance, identification of aphid feeding behavior using electrical penetration graph (EPG), and imaging of leaf trichome densities using a 3D microscope. According to antixenosis resistance screening, one highly-resistant, 25 moderately-resistant, and 38 slightly-resistant wheat cultivars to S. miscanthi were identified. Aphid choice tests showed that Luxuan266, 243726, and 213312 were the least preferred after 12, 24, 48, and 72 h of S. miscanthi release. Longer duration of Np, longer time to first probe, and shorter duration of E2 waveforms were recorded in Lunxuan266, 243726, and 213312 than in Beijing 837. The trichome density on adaxial and abaxial leaf surfaces of Lunxuan266, 243726 and 213312 was significantly higher than on those of Beijing 837. We concluded that Lunxuan266, 243726, and 213312 were antixenosis resistant to S. miscanthi based on the choice test, EPG results, and leaf trichome densities.
Collapse
|
10
|
Hammond‐Kosack MC, King R, Kanyuka K, Hammond‐Kosack KE. Exploring the diversity of promoter and 5'UTR sequences in ancestral, historic and modern wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2469-2487. [PMID: 34289221 PMCID: PMC8633512 DOI: 10.1111/pbi.13672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 05/25/2023]
Abstract
A data set of promoter and 5'UTR sequences of homoeo-alleles of 459 wheat genes that contribute to agriculturally important traits in 95 ancestral and commercial wheat cultivars is presented here. The high-stringency myBaits technology used made individual capture of homoeo-allele promoters possible, which is reported here for the first time. Promoters of most genes are remarkably conserved across the 83 hexaploid cultivars used with <7 haplotypes per promoter and 21% being identical to the reference Chinese Spring. InDels and many high-confidence SNPs are located within predicted plant transcription factor binding sites, potentially changing gene expression. Most haplotypes found in the Watkins landraces and a few haplotypes found in Triticum monococcum, germplasms hitherto not thought to have been used in modern wheat breeding, are already found in many commercial hexaploid wheats. The full data set which is useful for genomic and gene function studies and wheat breeding is available at https://rrescloud.rothamsted.ac.uk/index.php/s/DMCFDu5iAGTl50u/authenticate.
Collapse
Affiliation(s)
| | - Robert King
- Department of Computational and Analytical SciencesRothamsted ResearchHarpendenUK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | |
Collapse
|
11
|
Hafeez F, Abbas M, Zia K, Ali S, Farooq M, Arshad M, Iftikhar A, Saleem MJ, Zuan ATK, Li Y, Nasif O, Alharbi SA, Wainwright M, Ansari MJ. Prevalence and management of aphids (Hemiptera: Aphididae) in different wheat genotypes and their impact on yield and related traits. PLoS One 2021; 16:e0257952. [PMID: 34644343 PMCID: PMC8513891 DOI: 10.1371/journal.pone.0257952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes ('Sehar-2006', 'Shafaq-2006', 'Faisalabad-2008', 'Lasani-2008', 'Millat-2011' and 'Punjab-2011') to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids' infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype 'Punjab-2011' recorded the lower aphid infestation than 'Faisalabad-2008', 'Sehar-2006', 'Lasani-2008' and 'Shafaq-2006'. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011' and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.
Collapse
Affiliation(s)
- Faisal Hafeez
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Khuram Zia
- Office of Research Innovation and Commercialization, University of Agriculture, Faisalabad, Pakistan
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, RYK, Punjab, Pakistan
- * E-mail: , (SA); (ATKZ); (YL)
| | - Muhammad Farooq
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Arshad
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Iftikhar
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Jawad Saleem
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Ali Tan Kee Zuan
- Faculty of Agriculture, Department of Land Management, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail: , (SA); (ATKZ); (YL)
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- * E-mail: , (SA); (ATKZ); (YL)
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Milton Wainwright
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, India
| |
Collapse
|