1
|
Li S, Zhang H, Zhong J, Zhang B, Zhang K, Zhang Y, Li L, Yang Y, Wu Y, Hoogenboom R. X-ray-Induced Photodegradation of Hydrogels by the Incorporation of X-ray-Activated Long Persistent Luminescent Nanoparticles. J Am Chem Soc 2025. [PMID: 40323691 DOI: 10.1021/jacs.4c14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The development of on-demand degradable hydrogels remains an important challenge. Even though photodegradable hydrogels offer spatiotemporal control over degradation, it is difficult to use ultraviolet, visible, or near-infrared light as a tool for noninvasive triggering in vivo due to the poor tissue-penetration capacity. In contrast, X-ray irradiation can penetrate deep tissue and has virtually no penetration limitations for biological soft tissues. In this study, we propose an X-ray-photodegradation cascade system for hydrogel degradation by incorporating X-ray-activated persistent luminescence nanoparticles (X-PLNPs) into photodegradable hydrogels. A photodegradable 9,10-dialkoxyanthracene-based cross-linker was synthesized and used to prepare photodegradable hydrogels, of which the degradation behavior can be triggered by visible green light. Next, Tb3+-doped β-NaLuF4 was introduced as an X-PLNP that can convert X-rays into visible light centered at 544 nm. The afterglow can even be detected for 4 × 103 s after switching off the X-ray irradiation. The X-ray-induced green light emission was demonstrated to trigger photodegradation of the hydrogel. This proof-of-concept system for X-ray irradiation-induced on-demand hydrogel degradation was used to demonstrate X-ray-sensitive drug delivery inside a chicken breast as the in vitro tissue model. As this X-ray-induced cascade degradation of hydrogels can penetrate deep tissues, it is a promising platform for future in vivo applications requiring on-demand triggered hydrogel degradation, such as drug delivery or removal of hydrogel patches, hydrogel adhesives, or hydrogel tissue engineering scaffolds. It should, however, be noted that the hydrogel's X-ray and photoresponsiveness should be further improved to enable future in vivo use.
Collapse
Affiliation(s)
- Shanshan Li
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Hailei Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Jiaying Zhong
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Bo Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Kaiming Zhang
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000 Gent, Belgium
| | - Yuangong Zhang
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Leipeng Li
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, 180 Wusi Road, 071002 Baoding, China
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, 281-S4, 9000 Gent, Belgium
| |
Collapse
|
2
|
Zhu X, Qiu CJ, Cao JJ, Duosiken D, Zhang Y, Pei BG, Tao K, Pan SJ. Radiosensitization of Rare-Earth Nanoparticles Based on the Consistency Between Its K-Edge and the X-Ray Bremsstrahlung Peak. J Funct Biomater 2025; 16:41. [PMID: 39997575 PMCID: PMC11856676 DOI: 10.3390/jfb16020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Nanoparticle-based X-ray radiosensitization strategies have garnered significant attention in recent years. However, the underlying mechanisms of radiosensitization remain incompletely understood. In this work, we explore the influence of the K-edge effect in the X-ray absorption of nanomaterials on sensitization. Due to the alignment of the K-edge of thulium (Tm) with the Bremsstrahlung peak in the energy spectrum of medical X-ray accelerators, the following four different rare-earth nanomaterials with varying Tm percentages were designed: NaTmF4, NaTm0.6Lu0.4F4, NaTm0.4Lu0.6F4, and NaLuF4. We evaluated the X-ray absorption and the ability to generate secondary electrons and reactive oxygen species (ROS) of these nanoparticles. The radiosensitizing effect was evaluated through clonogenic assays. Our results showed that the K-edge effect affected secondary electron generation but did not significantly change ROS production. Nonetheless, NaTmF4 induced marginally more DNA damage in the U87 cells than the other cell types. NaTmF4 also exhibited superior radiosensitization efficacy against the U87 tumor cells. This shows that secondary electrons and ROS play pivotal roles in radiosensitization, which might be crucial to improving cancer treatment efficacy through enhanced radiation therapy outcomes.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China; (X.Z.); (C.-J.Q.); (J.-J.C.); (B.-G.P.)
- Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cheng-Jie Qiu
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China; (X.Z.); (C.-J.Q.); (J.-J.C.); (B.-G.P.)
| | - Jiao-Jiao Cao
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China; (X.Z.); (C.-J.Q.); (J.-J.C.); (B.-G.P.)
| | - Dida Duosiken
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (D.D.); (Y.Z.)
| | - Yuhan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (D.D.); (Y.Z.)
| | - Ben-Gen Pei
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China; (X.Z.); (C.-J.Q.); (J.-J.C.); (B.-G.P.)
- Department of Neurosurgery, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (D.D.); (Y.Z.)
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200020, China; (X.Z.); (C.-J.Q.); (J.-J.C.); (B.-G.P.)
| |
Collapse
|
3
|
Gopakumar G, Unger I, Slavíček P, Hergenhahn U, Öhrwall G, Malerz S, Céolin D, Trinter F, Winter B, Wilkinson I, Caleman C, Muchová E, Björneholm O. Radiation damage by extensive local water ionization from two-step electron-transfer-mediated decay of solvated ions. Nat Chem 2023; 15:1408-1414. [PMID: 37620544 PMCID: PMC10533389 DOI: 10.1038/s41557-023-01302-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Biomolecular radiation damage is largely mediated by radicals and low-energy electrons formed by water ionization rather than by direct ionization of biomolecules. It was speculated that such an extensive, localized water ionization can be caused by ultrafast processes following excitation by core-level ionization of hydrated metal ions. In this model, ions relax via a cascade of local Auger-Meitner and, importantly, non-local charge- and energy-transfer processes involving the water environment. Here, we experimentally and theoretically show that, for solvated paradigmatic intermediate-mass Al3+ ions, electronic relaxation involves two sequential solute-solvent electron transfer-mediated decay processes. The electron transfer-mediated decay steps correspond to sequential relaxation from Al5+ to Al3+ accompanied by formation of four ionized water molecules and two low-energy electrons. Such charge multiplication and the generated highly reactive species are expected to initiate cascades of radical reactions.
Collapse
Affiliation(s)
- G Gopakumar
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - I Unger
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- FS-BIG, DESY, Hamburg, Germany
| | - P Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - U Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - G Öhrwall
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - S Malerz
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Paris, France
| | - F Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - B Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - I Wilkinson
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - C Caleman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - E Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| | - O Björneholm
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Le BQG, Doan TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1874. [PMID: 36597015 DOI: 10.1002/wnan.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Bao Quang Gia Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Abstract
Cancer is a worldwide problem afflicting 19 million people. Inhibition of DNA synthesis has been a cornerstone of anticancer therapy. A variety of chemotherapy drugs have been developed and many of these are aimed at inhibiting DNA synthesis, as they damage DNA, form DNA adduct and interfere with DNA synthesis. Another type of chemotherapy interferes with the synthesis of nucleotide pools. There are also other types of drugs that inhibit topoisomerases resulting in the interference with DNA replication and transcription. Significant progress has been made regarding radiation therapy that includes X-ray (and γ-ray), proton therapy and heavy ion therapy. The Auger therapy is a type of radiation therapy that differs from X-ray, proton or heavy ion therapy. The method relies on the use of high Z elements such as gadolinium, iodine, gold or silver. Irradiation of these elements results in the release of electrons including the Auger electrons that have strong DNA damaging effect. Tamanoi et al. developed novel nanoparticles containing gadolinium or iodine to place high Z elements at the periphery of the nucleus thus localizing them close to DNA. Irradiation with monochromatic X-ray resulted in the formation of double-strand DNA breaks leading to the destruction of tumor mass. Comparison of conventional X-ray therapy and the Auger therapy is discussed.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan; Center for Integrative Medicine and Physics, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Higashi Y, Ma Y, Matsumoto K, Shiro A, Saitoh H, Kawachi T, Tamanoi F. Auger electrons and DNA double-strand breaks studied by using iodine-containing chemicals. Enzymes 2022; 51:101-115. [PMID: 36336404 DOI: 10.1016/bs.enz.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Irradiation of high Z elements such as iodine, gold, gadolinium with monochromatic X-rays causes photoelectric effects that include the release of Auger electrons. Decay of radioactive iodine such as I-123 and I-125 also results in multiple events and some involve the generation of Auger electrons. These electrons have low energy and travel only a short distance but have a strong effect on DNA damage including the generation of double-strand breaks. In this chapter, we focus on iodine and discuss various studies that used iodine-containing chemicals to generate Auger electrons and cause DNA double-strand breaks. First, DNA synthesis precursors containing iodine were used to place iodine on DNA. DNA binding dyes such as iodine Hoechst were investigated for Auger electron generation and DNA breaks. More recently, iodine containing nanoparticles were developed. We describe our study using tumor spheroids loaded with iodine nanoparticles and synchrotron-generated monochromatic X-rays. This study led to the demonstration that an optimum effect on DNA double-strand break formation is observed with a 33.2keV X-ray which is just above the K-edge energy of iodine.
Collapse
Affiliation(s)
- Yuya Higashi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Yue Ma
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ayumi Shiro
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Hyogo, Japan
| | - Hiroyuki Saitoh
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Hyogo, Japan
| | - Tetsuya Kawachi
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, Kizu, Japan
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments. PHOTONICS 2022. [DOI: 10.3390/photonics9060403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ultra-compact electron beam technology based on laser wakefield acceleration (LWFA) could have a significant impact on radiotherapy treatments. Recent developments in LWFA high-density regime (HD-LWFA) and low-intensity fiber optically transmitted laser beams could allow for cancer treatments with electron beams from a miniature electronic source. Moreover, an electron beam emitted from a tip of a fiber optic channel could lead to new endoscopy-based radiotherapy, which is not currently available. Low-energy (10 keV–1 MeV) LWFA electron beams can be produced by irradiating high-density nano-materials with a low-intensity laser in the range of ~1014 W/cm2. This energy range could be useful in radiotherapy and, specifically, brachytherapy for treating superficial, interstitial, intravascular, and intracavitary tumors. Furthermore, it could unveil the next generation of high-dose-rate brachytherapy systems that are not dependent on radioactive sources, do not require specially designed radiation-shielded rooms for treatment, could be portable, could provide a selection of treatment energies, and would significantly reduce operating costs to a radiation oncology clinic.
Collapse
|
8
|
Chen J, Dong H, Bai L, Li L, Chen S, Tian X, Pan Y. Multifunctional high- Z nanoradiosensitizers for multimodal synergistic cancer therapy. J Mater Chem B 2022; 10:1328-1342. [PMID: 35018941 DOI: 10.1039/d1tb02524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy (RT) is one of the most common and effective clinical therapies for malignant tumors. However, there are several limitations that undermine the clinical efficacy of cancer RT, including the low X-ray attenuation coefficient of organs, serious damage to normal tissues, and radioresistance in hypoxic tumors. With the rapid development of nanotechnology and nanomedicine, high-Z nanoradiosensitizers provide novel opportunities to overcome radioresistance and improve the efficacy of RT by deposition of radiation energy through photoelectric effects. To date, several types of nanoradiosensitizers have entered clinical trials. Nevertheless, the limitation of the single treatment mode and the unclear mechanism of nanoparticle radiosensitization have hindered the further development of nanoradiosensitizers. In this review, we systematically describe the interaction mechanisms between X-rays and nanomaterials and summarize recent advances in multifunctional high-Z nanomaterials for radiotherapeutic-based multimodal synergistic cancer therapy. Finally, the challenges and prospects are discussed to stimulate the development of nanomedicine-based cancer RT.
Collapse
Affiliation(s)
- Jieyao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Haiyue Dong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Linrong Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Sijie Chen
- Ming Wai Lau Centre of Reparative Medicine Karolinska Institutet, Hong Kong
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|