1
|
Buzatu IM, Tataranu LG, Duta C, Stoian I, Alexandru O, Dricu A. A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. Int J Mol Sci 2025; 26:2192. [PMID: 40076810 PMCID: PMC11899917 DOI: 10.3390/ijms26052192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neovascularization is an important process in brain tumor development, invasion and metastasis. Several research studies have indicated that the VEGF signaling target has potential for reducing angiogenesis in brain tumors. However, targeting VEGF signaling has not met the expected efficacy, despite initial enthusiasm. This is partly because tumors cleverly use alternative growth factor pathways, other than VEGF signaling, to restore angiogenesis. Multi-target inhibitors have been developed to inhibit several receptor kinases that play a role in the development of angiogenesis. By simultaneously affecting various receptor kinases, these treatments can potentially obstruct various angiogenic pathways that are involved in brain cancer advancement, often offering a more holistic strategy than treatments focusing on just one kinase. Since 2009, the FDA has approved a number of multi-kinase inhibitors that target angiogenic growth factor receptors (e.g., VEGFR, PDGFR, FGFR, RET, c-KIT, MET, AXL and others) for treatment of malignant diseases, including brain cancer. Here, we present some recent results from the literature regarding the preclinical and clinical effects of these inhibitors on brain tumors.
Collapse
Affiliation(s)
- Iuliana Mihaela Buzatu
- Department of Microbiology, “Fundeni” Clinical Institute, Șoseaua Fundeni 258, 022328 Bucharest, Romania;
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania;
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Duta
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Irina Stoian
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| |
Collapse
|
2
|
Roostalu U, Hansen HH, Hecksher-Sørensen J. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Drug Discov Today 2024; 29:104196. [PMID: 39368696 DOI: 10.1016/j.drudis.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.
Collapse
|
3
|
Oraiopoulou ME, Couturier DL, Bunce EV, Cannell IG, Sweeney PW, Naylor H, Golinska M, Hannon GJ, Sakkalis V, Bohndiek SE. The in vitro dynamics of pseudo-vascular network formation. Br J Cancer 2024; 131:457-467. [PMID: 38902534 PMCID: PMC11300916 DOI: 10.1038/s41416-024-02722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pseudo-vascular network formation in vitro is considered a key characteristic of vasculogenic mimicry. While many cancer cell lines form pseudo-vascular networks, little is known about the spatiotemporal dynamics of these formations. METHODS Here, we present a framework for monitoring and characterising the dynamic formation and dissolution of pseudo-vascular networks in vitro. The framework combines time-resolved optical microscopy with open-source image analysis for network feature extraction and statistical modelling. The framework is demonstrated by comparing diverse cancer cell lines associated with vasculogenic mimicry, then in detecting response to drug compounds proposed to affect formation of vasculogenic mimics. Dynamic datasets collected were analysed morphometrically and a descriptive statistical analysis model was developed in order to measure stability and dissimilarity characteristics of the pseudo-vascular networks formed. RESULTS Melanoma cells formed the most stable pseudo-vascular networks and were selected to evaluate the response of their pseudo-vascular networks to treatment with axitinib, brucine and tivantinib. Tivantinib has been found to inhibit the formation of the pseudo-vascular networks more effectively, even in dose an order of magnitude less than the two other agents. CONCLUSIONS Our framework is shown to enable quantitative analysis of both the capacity for network formation, linked vasculogenic mimicry, as well as dynamic responses to treatment.
Collapse
Affiliation(s)
- Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Ellie V Bunce
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Ian G Cannell
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Paul W Sweeney
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Huw Naylor
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Monika Golinska
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute (CRUK CI), University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Contenti J, Guo Y, Mazzu A, Irondelle M, Rouleau M, Lago C, Leva G, Tiberi L, Ben-Sahra I, Bost F, Mazure NM. The mitochondrial NADH shuttle system is a targetable vulnerability for Group 3 medulloblastoma in a hypoxic microenvironment. Cell Death Dis 2023; 14:784. [PMID: 38036520 PMCID: PMC10689432 DOI: 10.1038/s41419-023-06275-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Medulloblastoma is a cancerous brain tumor that affects mostly children. Among the four groups defined by molecular characteristics, Group 3, the least well characterized, is also the least favorable, with a survival rate of 50%. Current treatments, based on surgery, radiotherapy, and chemotherapy, are not adequate and the lack of understanding of the different molecular features of Group 3 tumor cells makes the development of effective therapies challenging. In this study, the problem of medulloblastoma is approached from a metabolic standpoint in a low oxygen microenvironment. We establish that Group 3 cells use both the mitochondrial glycerol-3 phosphate (G3PS) and malate-aspartate shuttles (MAS) to produce NADH. Small molecules that target G3PS and MAS show a greater ability to decrease cell proliferation and induce apoptosis specifically of Group 3 cells. In addition, as Group 3 cells show improved respiration in hypoxia, the use of Phenformin, a mitochondrial complex 1 inhibitor, alone or in combination, induced significant cell death. Furthermore, inhibition of the cytosolic NAD+ recycling enzyme lactate dehydrogenase A (LDHA), enhanced the effects of the NADH shuttle inhibitors. In a 3D model using Group 3 human cerebellar organoids, tumor cells also underwent apoptosis upon treatment with NADH shuttle inhibitors. Our study demonstrates metabolic heterogeneity depending on oxygen concentrations and provides potential therapeutic solutions for patients in Group 3 whose tumors are the most aggressive.
Collapse
Affiliation(s)
- J Contenti
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France.
- Pasteur II Hospital, Department of Emergency Medicine, University Hospital Center, 30 voie Romaine, 06000, Nice, France.
| | - Y Guo
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - A Mazzu
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - M Irondelle
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - M Rouleau
- Université Côte d'Azur, Laboratoire de PhysioMédecine Moléculaire - LP2M, CNRS-UMR 7370, Faculty of Medicine, 28 ave de Valombrose, 06107, Nice Cedex 02, France
| | - C Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biollogy - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - G Leva
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biollogy - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - L Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biollogy - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - I Ben-Sahra
- Northwestern University Feinberg School of Medicine, Robert H. Lurie Cancer Center, 303 East Superior Street, Chicago, IL, 60611, USA
| | - F Bost
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France
| | - N M Mazure
- Université Côte d'Azur, INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204, Nice, France.
| |
Collapse
|
5
|
Penco-Campillo M, Pages G, Martial S. Angiogenesis and Lymphangiogenesis in Medulloblastoma Development. BIOLOGY 2023; 12:1028. [PMID: 37508458 PMCID: PMC10376362 DOI: 10.3390/biology12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Medulloblastoma (MB) is the most prevalent brain tumor in children. Although the current cure rate stands at approximately 70%, the existing treatments that involve a combination of radio- and chemotherapy are highly detrimental to the patients' quality of life. These aggressive therapies often result in a significant reduction in the overall well-being of the patients. Moreover, the most aggressive forms of MB frequently relapse, leading to a fatal outcome in a majority of cases. However, MB is highly vascularized, and both angiogenesis and lymphangiogenesis are believed to play crucial roles in tumor development and spread. In this context, our objective is to provide a comprehensive overview of the current research progress in elucidating the functions of these two pathways.
Collapse
Affiliation(s)
- Manon Penco-Campillo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Gilles Pages
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| | - Sonia Martial
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, CNRS UMR 7284 and INSERM U1081, 33 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
6
|
Funke VLE, Walter C, Melcher V, Wei L, Sandmann S, Hotfilder M, Varghese J, Jäger N, Kool M, Jones DTW, Pfister SM, Milde T, Mynarek M, Rutkowski S, Seggewiss J, Jeising D, de Faria FW, Marquardt T, Albert TK, Schüller U, Kerl K. Group-specific cellular metabolism in Medulloblastoma. J Transl Med 2023; 21:363. [PMID: 37277823 DOI: 10.1186/s12967-023-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.
Collapse
Affiliation(s)
- Viktoria L E Funke
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carolin Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lanying Wei
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jochen Seggewiss
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Daniela Jeising
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
7
|
Silant'ev VE, Shmelev ME, Belousov AS, Patlay AA, Shatilov RA, Farniev VM, Kumeiko VV. How to Develop Drug Delivery System Based on Carbohydrate Nanoparticles Targeted to Brain Tumors. Polymers (Basel) 2023; 15:polym15112516. [PMID: 37299315 DOI: 10.3390/polym15112516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.
Collapse
Affiliation(s)
- Vladimir E Silant'ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, 690022 Vladivostok, Russia
| | - Mikhail E Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei S Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksandra A Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Roman A Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vladislav M Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041 Vladivostok, Russia
| |
Collapse
|
8
|
Contenti J, Bost F, Mazure NM. [Medulloblastoma: The latest major advances]. Bull Cancer 2023; 110:412-423. [PMID: 36822958 DOI: 10.1016/j.bulcan.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
Medulloblastoma (MB) is a malignant brain tumor that mainly affects children. It is rarely found in adults. Among the four groups of MB defined today according to molecular characteristics, group 3 is the least favorable with an overall survival rate of 50 %. Current treatments, based on surgery, radiotherapy, and chemotherapy, are not sufficiently adapted to the different characteristics of the four MB groups. However, the use of new cellular and animal models has opened new doors to interesting therapeutic avenues. In this review, we detail recent advances in MB research, with a focus on the genes and pathways that drive tumorigenesis, with particular emphasis on the animal models that have been developed to study tumor biology, as well as advances in new targeted therapies.
Collapse
Affiliation(s)
- Julie Contenti
- Université Côte d'Azur, C3M, Inserm U1065, 151, route de Saint-Antoine-de-Ginestière, BP2 3194, 06204 Nice cedex 03, France; CHU de Nice, 30, voie Romaine, 06000 Nice, France.
| | - Frédéric Bost
- Université Côte d'Azur, C3M, Inserm U1065, 151, route de Saint-Antoine-de-Ginestière, BP2 3194, 06204 Nice cedex 03, France
| | - Nathalie M Mazure
- Université Côte d'Azur, C3M, Inserm U1065, 151, route de Saint-Antoine-de-Ginestière, BP2 3194, 06204 Nice cedex 03, France.
| |
Collapse
|
9
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
10
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
11
|
Tran KB, Kolekar S, Wang Q, Shih JH, Buchanan CM, Deva S, Shepherd PR. Response to BRAF-targeted Therapy Is Enhanced by Cotargeting VEGFRs or WNT/β-Catenin Signaling in BRAF-mutant Colorectal Cancer Models. Mol Cancer Ther 2022; 21:1777-1787. [PMID: 36198029 PMCID: PMC9716247 DOI: 10.1158/1535-7163.mct-21-0941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
The fact that 10% of colorectal cancer tumors harbor BRAF V600E mutations suggested targeting BRAF as a potential therapy. However, BRAF inhibitors have only limited single-agent efficacy in this context. The potential for combination therapy has been shown by the BEACON trial where targeting the EGF receptor with cetuximab greatly increased efficacy of BRAF inhibitors in BRAF-mutant colorectal cancer. Therefore, we explored whether efficacy of the mutant BRAF inhibitor vemurafenib could be enhanced by cotargeting of either oncogenic WNT/β-catenin signaling or VEGFR signaling. We find the WNT/β-catenin inhibitors pyrvinium, ICG-001 and PKF118-310 attenuate growth of colorectal cancer cell lines in vitro with BRAF-mutant lines being relatively more sensitive. Pyrvinium combined with vemurafenib additively or synergistically attenuated growth of colorectal cancer cell lines in vitro. The selective and potent VEGFR inhibitor axitinib was most effective against BRAF-mutant colorectal cancer cell lines in vitro, but the addition of vemurafenib did not significantly increase these effects. When tested in vivo in animal tumor models, both pyrvinium and axitinib were able to significantly increase the ability of vemurafenib to attenuate tumor growth in xenografts of BRAF-mutant colorectal cancer cells. The magnitude of these effects was comparable with that induced by a combination of vemurafenib and cetuximab. This was associated with additive effects on release from tumor cells and tumor microenvironment cell types of substances that would normally aid tumor progression. Taken together, these preclinical data indicate that the efficacy of BRAF inhibitor therapy in colorectal cancer could be increased by cotargeting either WNT/β-catenin or VEGFRs with small-molecule inhibitors.
Collapse
Affiliation(s)
- Khanh B. Tran
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Sharada Kolekar
- Auckland Cancer Society Research Center, University of Auckland, New Zealand
| | - Qian Wang
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand
| | - Jen-Hsing Shih
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand
| | - Christina M. Buchanan
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand
| | - Sanjeev Deva
- Cancer Clinical Trials Unit, Auckland District Health Board, Auckland, New Zealand
| | - Peter R. Shepherd
- Department of Molecular Medicine. University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre, Auckland, New Zealand.,Auckland Cancer Society Research Center, University of Auckland, New Zealand.,Corresponding Author: Peter R. Shepherd, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand. Phone: 649-373-7999; E-mail:
| |
Collapse
|
12
|
van Bree NFHN, Wilhelm M. The Tumor Microenvironment of Medulloblastoma: An Intricate Multicellular Network with Therapeutic Potential. Cancers (Basel) 2022; 14:5009. [PMID: 36291792 PMCID: PMC9599673 DOI: 10.3390/cancers14205009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Medulloblastoma (MB) is a heterogeneous disease in which survival is highly affected by the underlying subgroup-specific characteristics. Although the current treatment modalities have increased the overall survival rates of MB up to 70-80%, MB remains a major cause of cancer-related mortality among children. This indicates that novel therapeutic approaches against MB are needed. New promising treatment options comprise the targeting of cells and components of the tumor microenvironment (TME). The TME of MB consists of an intricate multicellular network of tumor cells, progenitor cells, astrocytes, neurons, supporting stromal cells, microglia, immune cells, extracellular matrix components, and vasculature systems. In this review, we will discuss all the different components of the MB TME and their role in MB initiation, progression, metastasis, and relapse. Additionally, we briefly introduce the effect that age plays on the TME of brain malignancies and discuss the MB subgroup-specific differences in TME components and how all of these variations could affect the progression of MB. Finally, we highlight the TME-directed treatments, in which we will focus on therapies that are being evaluated in clinical trials.
Collapse
Affiliation(s)
| | - Margareta Wilhelm
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
13
|
Pritha A, Anderson R, Anderson DE, Nicolaides T. A Holistic Review on the Current and Future Status of Biology-Driven and Broad-Spectrum Therapeutic Options for Medulloblastoma. Cureus 2022; 14:e23447. [PMID: 35481313 PMCID: PMC9034720 DOI: 10.7759/cureus.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
With a thorough investigation of the etiology of medulloblastomas, a comprehensive review was done to categorize available clinical trials in order to discuss the future potential of breakthroughs in treatment options. The pertinent issues of medulloblastoma therapy with radiation being inapplicable to children under the age of 3, and therapies causing toxicity are detailed and discussed in the context of understanding how the current therapies may address these suboptimal treatment modalities. This study aggregated published studies from the US government clinical trials website and filtered them based on their direct treatment towards medulloblastomas. Thirty-two clinical trials were applicable to be analyzed and the treatment mechanisms were discussed along with the efficacy; molecular groupings of medulloblastomas were also investigated. The investigated therapies tend to target sonic hedgehog (SHH)-subtype medulloblastomas, but there is a necessity for group 3 subtype and group 4 subtype to be targeted as well. Due to the heterogeneous nature of tumor relapse in groups 3 and 4, there are less specified trials towards those molecular groupings, and radiation seems to be the main scope of treatment. Medulloblastomas being primarily a pediatric tumor require treatment options that minimize radiation to increase the quality of living in children and to prevent long-term symptoms of over radiation. Exploring symptomatic treatment with donepezil in children with combination therapies may be a potential route for future trials; immunotherapies seem to hold potential in treating patients reacting adversely to radiation therapy.
Collapse
|
14
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
15
|
Pagnuzzi-Boncompagni M, Picco V, Vial V, Planas-Bielsa V, Vandenberghe A, Daubon T, Derieppe MA, Montemagno C, Durivault J, Grépin R, Martial S, Doyen J, Gavard J, Pagès G. Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma. Cancers (Basel) 2021; 14:cancers14010070. [PMID: 35008234 PMCID: PMC8750527 DOI: 10.3390/cancers14010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Medulloblastoma is the most frequent pediatric brain cancer. Despite great improvements in the treatment of this disease over the last decades, survivors are subject to debilitating adverse effects that strongly impair their quality of life. There is an urgent need to find efficient anticancer therapies with fewer toxic effects. In this study, we suggest that an FDA- and EMA-approved antiangiogenic compound named axitinib may display effective antitumoral effects and low toxicity towards children as compared to a reference treatment currently used in clinical protocols. We also show that this compound can enter the brain compartment and exert antitumoral effects in vivo. Our study paves the way towards a clinical trial of repurposing axitinib to a pediatric brain cancer indication. Abstract Background: Despite the improvement of medulloblastoma (MB) treatments, survivors face severe long-term adverse effects and associated morbidity following multimodal treatments. Moreover, relapses are fatal within a few months. Therefore, chemotherapies inducing fewer adverse effects and/or improving survival at relapse are key for MB patients. Our purpose was to evaluate the last-generation antiangiogenic drugs for their relevance in the therapeutic arsenal of MB. Methods: We screened three EMA- and FDA-approved antiangiogenic compounds (axitinib, cabozantinib and sunitinib) for their ability to reduce cell viability of five MB cell lines and their low toxicity towards two normal cell lines in vitro. Based on this screening, single-agent and combination therapies were designed for in vivo validation. Results: Axitinib, cabozantinib and sunitinib decreased viability of all the tested tumor cells. Although sunitinib was the most efficient in tumor cells, it also impacted normal cells. Therefore, axitinib showed the highest selectivity index for MB cells as compared to normal cells. The compound did not lead to acute toxicity in juvenile rats and crossed the blood–brain barrier. Moreover, axitinib efficiently reduced the growth rate of experimental brain tumors. Analysis of public databases showed that high expression of axitinib targets correlates with poor prognosis. Conclusion: Our results suggest that axitinib is a compelling candidate for MB treatment.
Collapse
Affiliation(s)
- Marina Pagnuzzi-Boncompagni
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
- Correspondence: (V.P.); (G.P.); Tel.: +377-97-77-44-15 (V.P.); +33-4-92-03-12-39 (G.P.)
| | - Valérie Vial
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | | | - Ashaina Vandenberghe
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Thomas Daubon
- Institut de Biochimie et Génétique Cellulaires (IBGC), CNRS, University of Bordeaux, UMR 5095, 33000 Bordeaux, France;
| | - Marie-Alix Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33600 Pessac, France;
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Jérôme Durivault
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Renaud Grépin
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
| | - Sonia Martial
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), University Nice Cote d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France;
| | - Jérôme Doyen
- Department of Radiation Oncology, Centre Antoine-Lacassagne, University of Côte d’Azur, Fédération Claude Lalanne, 06189 Nice, France;
| | - Julie Gavard
- Team SOAP, CRCINA, INSERM, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center of Oncology, 44800 St. Herblain, France
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (M.P.-B.); (V.V.); (A.V.); (C.M.); (J.D.); (R.G.)
- Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), University Nice Cote d’Azur, CNRS UMR 7284, INSERM U1081, 06189 Nice, France;
- Correspondence: (V.P.); (G.P.); Tel.: +377-97-77-44-15 (V.P.); +33-4-92-03-12-39 (G.P.)
| |
Collapse
|