1
|
Abdelgadir O, Kuo YF, Khan MF, Okorodudu AO, Cheng YW, Dong J. Mortality Outcome Associated with Specific KRAS, NRAS, and BRAF Hot-Spot Mutations in Metastatic Colorectal Cancer Patients: A Retrospective Cohort Study. Diagnostics (Basel) 2025; 15:590. [PMID: 40075837 PMCID: PMC11899597 DOI: 10.3390/diagnostics15050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objective: The prognostic value of specific hot-spot mutations within KRAS, NRAS, and BRAF genes in metastatic colorectal cancer (mCRC) genes remains debatable. This study explores whether certain KRAS, NRAS, and BRAF mutations are associated with the risk of all-cause mortality in mCRC. Methods: We retrospectively analyzed records of 494 patients with mCRC treated at the University of Texas Medical Branch between January 2016 and July 2023. Data on genetic mutations and clinicopathological features were collected for this analysis. We estimated survival probabilities and conducted multivariable Cox proportional hazards regression to evaluate the impact of specific mutations on all-cause mortality risk. Results:KRAS c.35G>T (p.Gly12Val) and c.34G>T (p.Gly12Cys) mutations were significantly associated with an increased risk of all-cause mortality in the overall mCRC population and the treated mCRC subgroup. KRAS c.38G>A (p.Gly13Asp) was significantly associated with an increased risk of all-cause mortality in the treated mCRC subgroup but BRAF c.1799T>A (p.Val600Glu) was significantly associated with an increased risk of all-cause mortality in the overall mCRC population. No significant association was observed between NRAS mutations and mortality risk in mCRC, possibly due to their lower frequency or different biological effects compared to KRAS and BRAF mutations. Conclusions: These findings suggest that specific KRAS [c.35G>T (p.Gly12Val), c.34G>T (p.Gly12Cys), and c.38G>A (p.Gly13Asp)] and BRAF c.1799T>A (p.Val600Glu) mutations may have prognostic value in mCRC. However, given the single-center study design and lack of direct therapeutic implications, larger multicenter studies are needed to substantiate these results and better define the clinical relevance of these mutations.
Collapse
Affiliation(s)
- Omer Abdelgadir
- Graduate School of Biomedical Science, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yong-Fang Kuo
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - M. Firoze Khan
- Department of Pathology, University Texas Medical Branch, Galveston, TX 77555, USA; (M.F.K.); (A.O.O.)
| | - Anthony O. Okorodudu
- Department of Pathology, University Texas Medical Branch, Galveston, TX 77555, USA; (M.F.K.); (A.O.O.)
| | - Yu-Wei Cheng
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Jianli Dong
- Department of Pathology, University Texas Medical Branch, Galveston, TX 77555, USA; (M.F.K.); (A.O.O.)
| |
Collapse
|
2
|
Ahn M, Lee T, Kim KS, Lee S, Na K. Synergistic Approach of Antibody-Photosensitizer Conjugate Independent of KRAS-Mutation and Its Downstream Blockade Pathway in Colorectal Cancer. Adv Healthc Mater 2023; 12:e2302374. [PMID: 37722358 DOI: 10.1002/adhm.202302374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Here, a novel approach is presented to improve the efficacy of antibody-drug conjugates (ADC) by integrating antibody-mediated immunotherapy and photodynamic therapy (PDT) in a combination therapy system utilizing an antibody-photosensitizer conjugate (APC) platform based on a poloxamer polymer linker. To specifically target Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)-mutated cancer cells, an antibody antiepidermal growth factor receptor (EGFR), cetuximab, with a poloxamer linker coupled with the photosensitizer chlorin e6 through click chemistry (cetuximab-maleimide-poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-chlorine e6 conjugate, CMPXC) is synthesized. CMPXC is cytotoxic upon laser treatment, achieving a 90% cell death by suppressing KRAS downstream signaling pathways associated with ERK and AKT proteins, confirmed using RNA sequencing analysis. In KRAS-mutated colorectal cancer mouse models, CMPXC significantly enhances antitumor efficacy compared with cetuximab treatment alone, resulting in an 86% reduction in tumor growth. Furthermore, CMPXC treatment leads to a 2.24- and 1.75-fold increase in dendritic and priming cytotoxic T cells, respectively, highlighting the immune-activating potential of this approach. The findings suggest that the APC platform addresses the challenges associated with ADC development and EGFR-targeted therapy, including the synergistic advantages of antibody-mediated immunotherapy and PDT.
Collapse
Affiliation(s)
- Minji Ahn
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Taebum Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
3
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Zeissig MN, Ashwood LM, Kondrashova O, Sutherland KD. Next batter up! Targeting cancers with KRAS-G12D mutations. Trends Cancer 2023; 9:955-967. [PMID: 37591766 DOI: 10.1016/j.trecan.2023.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
KRAS is the most frequently mutated oncogene in cancer. Activating mutations in codon 12, especially G12D, have the highest prevalence across a range of carcinomas and adenocarcinomas. With inhibitors to KRAS-G12D now entering clinical trials, understanding the biology of KRAS-G12D cancers, and identifying biomarkers that predict therapeutic response is crucial. In this Review, we discuss the genomics and biology of KRAS-G12D adenocarcinomas, including histological features, transcriptional landscape, the immune microenvironment, and how these factors influence response to therapy. Moreover, we explore potential therapeutic strategies using novel G12D inhibitors, leveraging knowledge gained from clinical trials using G12C inhibitors.
Collapse
Affiliation(s)
- Mara N Zeissig
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, 4006, Australia; The University of Queensland, Brisbane, 4072, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, 4006, Australia; The University of Queensland, Brisbane, 4072, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| |
Collapse
|
5
|
Fang X, Zhong C, Weng S, Hu H, Wang J, Xiao Q, Wang J, Sun L, Xu D, Liao X, Dong C, Zhang S, Li J, Ding K, Yuan Y. Sintilimab plus bevacizumab and CapeOx (BBCAPX) on first-line treatment in patients with RAS mutant, microsatellite stable, metastatic colorectal cancer: study protocol of a randomized, open-label, multicentric study. BMC Cancer 2023; 23:676. [PMID: 37464378 DOI: 10.1186/s12885-023-11139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Rat sarcoma viral oncogene homolog (RAS) gene mutation is a common molecular event in colorectal cancer (CRC). The prognosis of mCRC (metastatic colorectal cancer) patients with RAS mutation is poor and capecitabine and oxaliplatin (CapeOx) plus bevacizumab has shown to be one of the standard therapeutic regimens as first line for these patients with objective response rate (ORR) of ~ 50% and median progression-free survival (mPFS) of 8-9 months. Immunotherapy, especially anti-programmed death 1 (PD-1) monoclonal antibody has demonstrated ground-breaking results in deficient mismatch repair (dMMR) / microsatellite instability-high (MSI-H) mCRC patients. However, the response rate of in microsatellite stable (MSS) patients is extremely low. In addition, preclinical studies have demonstrated that anti-Vascular endothelial growth factor (VEGF) agents, such as bevacizumab, can induce tumor vascular normalization and enhance antitumor immunity. Previous study indicated the combination of chemotherapy, anti-VEGF agents (bevacizumab) with immune checkpoint inhibitors may have promising clinical activity in RAS mutant, MSS refractory mCRC patients. Based on these evidences, we will explore the combination of CapeOx with bevacizumab and sintilimab (anti-PD-1 monoclonal antibody) in RAS mutant, MSS mCRC patients as first-line therapy. METHODS This is a randomized, open-label, multicentric clinical trial. In the sintilimab arm, patients will receive sintilimab in combination with CapeOx and bevacizumab. In the control arm, patients will receive CapeOx and bevacizumab. This trial will recruit 494 patients from 20 centers and randomly (1:1) disseminated into two groups. The primary endpoint is the PFS. The secondary endpoints include overall survival, safety, ORR, and disease control rate. DISCUSSION This study may provide new ideas for optimizing oncology treatment planning for RAS mutant, MSS mCRC patients in the first-line set. TRIAL REGISTRATION This study is short for BBCAPX and has been registered at clinicaltrials.gov registry with identifier NCT05171660.
Collapse
Affiliation(s)
- Xuefeng Fang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chenhan Zhong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Shanshan Weng
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Hanguang Hu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lifeng Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dong Xu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiujun Liao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Caixia Dong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Lavacchi D, Fancelli S, Roviello G, Castiglione F, Caliman E, Rossi G, Venturini J, Pellegrini E, Brugia M, Vannini A, Bartoli C, Cianchi F, Pillozzi S, Antonuzzo L. Mutations matter: An observational study of the prognostic and predictive value of KRAS mutations in metastatic colorectal cancer. Front Oncol 2022; 12:1055019. [PMID: 36523988 PMCID: PMC9745189 DOI: 10.3389/fonc.2022.1055019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND About half of metastatic colorectal cancers (CRCs) harbor Rat Sarcoma (RAS) activating mutations as oncogenic driver, but the prognostic role of RAS mutations is not fully elucidated. Interestingly, specific hotspot mutations have been identified as potential candidates for novel targeted therapies in several malignancies as per G12C. This study aims at evaluating the association between KRAS hotspot mutations and patient characteristics, prognosis and response to antiangiogenic drugs. METHODS Data from RAS-mutated CRC patients referred to Careggi University Hospital, between January 2017 and April 2022 were retrospectively and prospectively collected. Tumor samples were assessed for RAS mutation status using MALDI-TOF Mass Spectrometry, Myriapod NGS-56G Onco Panel, or Myriapod NGS Cancer Panel DNA. RESULTS Among 1047 patients with available RAS mutational status, 183 KRAS-mutated patients with advanced CRC had adequate data for clinicopathological and survival analysis. KRAS mutations occurred at codon 12 in 67.2% of cases, codon 13 in 23.5%, codon 61 in 2.2%, and other codons in 8.2%. G12C mutation was identified in 7.1% of patients and exon 4 mutations in 7.1%. KRAS G12D mutation, as compared to other mutations, was significantly associated with liver metastases (1-sided p=0.005) and male sex (1-sided p=0.039), KRAS G12C mutation with peritoneal metastases (1-sided p=0.035), KRAS G12V mutation with female sex (1-sided p=0.025) and no surgery for primary tumor (1-sided p=0.005). No associations were observed between specific KRAS variants and age, ECOG PS, site of primary tumor, pattern of recurrence for resected patients, and lung, distant lymph node, bone, or brain metastases.Overall survival (OS) was significantly longer in patients with KRAS exon 4 mutations than in those with other KRAS mutations (mOS 43.6 months vs 20.6 months; HR 0.45 [0.21-0.99], p=0.04). No difference in survival was observed for mutations at codon 12/13/61 (p=0.1). Treatment with bevacizumab (BV) increased significatively mPFS (p=0.036) and mOS (p=0.019) of the entire population with a substantial benefit in mOS for G12V mutation (p=0.031). CONCLUSIONS Patterns of presentation and prognosis among patients with specific RAS hotspot mutations deserve to be extensively studied in large datasets, with a specific attention to the uncommon isoforms and the role of anti-angiogenic drugs.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Sara Fancelli
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Francesca Castiglione
- Pathologic Histology and Molecular diagnostic Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gemma Rossi
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Jacopo Venturini
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Elisa Pellegrini
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Agnese Vannini
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Caterina Bartoli
- Pathologic Histology and Molecular diagnostic Unit, Careggi University Hospital, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
7
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
8
|
Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev 2022; 109:102433. [PMID: 35905558 DOI: 10.1016/j.ctrv.2022.102433] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022]
Abstract
RAS genes are the most frequently mutated oncogenes in cancer. These mutations occur in roughly half of the patients with colorectal cancer (CRC). RAS mutant tumors are resistant to therapy with anti-EGFR monoclonal antibodies. Therefore, patients with RAS mutant CRC currently have few effective therapy options. RAS mutations lead to constitutively active RAS GTPases, involved in multiple downstream signaling pathways. These alterations are associated with a tumor microenvironment (TME) that drives immune evasion and disease progression by mechanisms that remain incompletely understood. In this review, we focus on the available evidence in the literature explaining the potential effects of RAS mutations on the CRC microenvironment. Ongoing efforts to influence the TME by targeting mutant RAS and thereby sensitizing these tumors to immunotherapy will be discussed as well.
Collapse
|
9
|
Yi B, Dai K, Yan Z, Yin Z. Circular RNA PLCE1 promotes epithelial mesenchymal transformation, glycolysis in colorectal cancer and M2 polarization of tumor-associated macrophages. Bioengineered 2022; 13:6243-6256. [PMID: 35349390 PMCID: PMC9208481 DOI: 10.1080/21655979.2021.2003929] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plentiful studies have clarified that circular RNAs (circRNAs) are crucial in colorectal cancer (CRC)’s occurrence and development, but its function has not been fully elucidated. The purpose of this study was to investigate the biological functions of circPLCE1 on epithelial mesenchymal transformation (EMT) and glycolysis in CRC, and tumor-associated macrophage (TAM) polarization. The results affirmed augment of circPLCE1 and γ-Actin Gene (ACTG1) but decline of miR-485-5p in CRC. Knockdown circPCLE1 refrained CRC proliferation, glucose consumption, lactic acid and pyruvate production, M2 macrophage markers (IL-10, MRC1), N-cadherin, Snail, reduced the proportion of CD206+ and CD168+ macrophages, but expedited M1 macrophage markers (TNF-α, IL-6) and E-cadherin, while descending miR-485-5p expedited EMT, glycolysis in CRC and TAM M2 polarization . Additionally, it was affirmed that the repression or motivation of depressive or elevated circPCLE1 on EMT, glycolysis in CRC and TAM M2 polarization were reversed via facilitated ACTG1 and miR-485-5p, separately. Mechanism studies have clarified that circPCLE1 as a competitive endogenous RNA adsorbed miR-485-5p to mediate ACTG1. It was assured that refrained circPCLE1 constrained CRC tumor growth, EMT and TAM M2 polarization. In brief, circPCLE1 expedites EMT, glycolysis in CRC and TAM M2 polarization via modulating the miR-485-5p/ACTG1 axis, and is supposed to be a latent molecular target for CRC therapy later.
Collapse
Affiliation(s)
- Bo Yi
- Gastrointestinal Surgery, University of Eletronic Science and Technology of China, Chengdu City, SiChuan Province, China
| | - KeJu Dai
- Ultrasonic Medical Center, University of Eletronic Science and Technology of China, ChengDu City, SiChuan Province, China
| | - ZhiQiang Yan
- Department of Anus and Intestine Surgery, The Affiliated Hospital of GuiZhou Medical University, GuiYang City, GuiZhou Province, China
| | - ZhaoHui Yin
- Department of Anus and Intestine Surgery, The Affiliated Maotai Hospital of ZunYi Medical University, ZunYi City, GuiZhou Province, China
| |
Collapse
|
10
|
Olivera-Salazar R, García-Arranz M, Sánchez A, Olmedillas-López S, Vega-Clemente L, Serrano LJ, Herrera B, García-Olmo D. Oncological transformation in vitro of hepatic progenitor cell lines isolated from adult mice. Sci Rep 2022; 12:3149. [PMID: 35210455 PMCID: PMC8873244 DOI: 10.1038/s41598-022-06427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer cells can transfer the oncogene KRAS to distant cells, predisposing them to malignant transformation (Genometastasis Theory). This process could contribute to liver metastasis; besides, hepatic progenitor cells (HPCs) have been found to be involved in liver malignant neoplasms. The objective of this study is to determine if mouse HPCs—Oval cells (OCs)—are susceptible to incorporate Kras GAT (G12D) mutation from mouse colorectal cancer cell line CT26.WT and if OCs with the incorporated mutation behave like malignant cells. To achieve this, three lines of OCs in different conditions were exposed to CT26.WT cells through transwell co-culture for a week. The presence of KrasG12D and capacity to form tumors were analyzed in treated samples by droplet digital PCR and colony-forming assays, respectively. The results showed that the KrasG12D mutation was detected in hepatic culture conditions of undifferentiated OCs and these cells were capable of forming tumors in vitro. Therefore, OCs are susceptible to malignant transformation by horizontal transfer of DNA with KrasG12D mutation in an undifferentiated condition associated with the liver microenvironment. This study contributes to a new step in the understanding of the colorectal metastatic process.
Collapse
Affiliation(s)
- Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Luz Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Luis Javier Serrano
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|