1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Cassidy LM, Russell M, Smith M, Delbarre G, Cheetham P, Manley H, Mattiangeli V, Breslin EM, Jackson I, McCann M, Little H, O'Connor CG, Heaslip B, Lawson D, Endicott P, Bradley DG. Continental influx and pervasive matrilocality in Iron Age Britain. Nature 2025; 637:1136-1142. [PMID: 39814899 PMCID: PMC11779635 DOI: 10.1038/s41586-024-08409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
Roman writers found the relative empowerment of Celtic women remarkable1. In southern Britain, the Late Iron Age Durotriges tribe often buried women with substantial grave goods2. Here we analyse 57 ancient genomes from Durotrigian burial sites and find an extended kin group centred around a single maternal lineage, with unrelated (presumably inward migrating) burials being predominantly male. Such a matrilocal pattern is undescribed in European prehistory, but when we compare mitochondrial haplotype variation among European archaeological sites spanning six millennia, British Iron Age cemeteries stand out as having marked reductions in diversity driven by the presence of dominant matrilines. Patterns of haplotype sharing reveal that British Iron Age populations form fine-grained geographical clusters with southern links extending across the channel to the continent. Indeed, whereas most of Britain shows majority genomic continuity from the Early Bronze Age to the Iron Age, this is markedly reduced in a southern coastal core region with persistent cross-channel cultural exchange3. This southern core has evidence of population influx in the Middle Bronze Age but also during the Iron Age. This is asynchronous with the rest of the island and points towards a staged, geographically granular absorption of continental influence, possibly including the acquisition of Celtic languages.
Collapse
Affiliation(s)
- Lara M Cassidy
- Department of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Miles Russell
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Martin Smith
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Gabrielle Delbarre
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Paul Cheetham
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Harry Manley
- Department of Life and Environmental Sciences, Bournemouth University, Bournemouth, UK
| | | | - Emily M Breslin
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Iseult Jackson
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Maeve McCann
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Harry Little
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Beth Heaslip
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniel Lawson
- School of Mathematics, University of Bristol, Bristol, UK
| | - Phillip Endicott
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Linguistics, University of Hawai'i at Mānoa, Mānoa, HI, USA
- DFG Center for Advanced Studies, University of Tübingen, Tübingen, Germany
- Éco-anthropologie, Musée de l'Homme, Paris, France
| | | |
Collapse
|
3
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Parasayan O, Laurelut C, Bôle C, Bonnabel L, Corona A, Domenech-Jaulneau C, Paresys C, Richard I, Grange T, Geigl EM. Late Neolithic collective burial reveals admixture dynamics during the third millennium BCE and the shaping of the European genome. SCIENCE ADVANCES 2024; 10:eadl2468. [PMID: 38896620 PMCID: PMC11186501 DOI: 10.1126/sciadv.adl2468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The third millennium BCE was a pivotal period of profound cultural and genomic transformations in Europe associated with migrations from the Pontic-Caspian steppe, which shaped the ancestry patterns in the present-day European genome. We performed a high-resolution whole-genome analysis including haplotype phasing of seven individuals of a collective burial from ~2500 cal BCE and of a Bell Beaker individual from ~2300 cal BCE in the Paris Basin in France. The collective burial revealed the arrival in real time of steppe ancestry in France. We reconstructed the genome of an unsampled individual through its relatives' genomes, enabling us to shed light on the early-stage admixture patterns, dynamics, and propagation of steppe ancestry in Late Neolithic Europe. We identified two major Neolithic/steppe-related ancestry admixture pulses around 3000/2900 BCE and 2600 BCE. These pulses suggest different population expansion dynamics with striking links to the Corded Ware and Bell Beaker cultural complexes.
Collapse
Affiliation(s)
- Oğuzhan Parasayan
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Christophe Laurelut
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Christine Bôle
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Université Paris Cité, Paris, France
| | | | - Alois Corona
- Service archéologique interdépartemental, 78180 Montigny-le-Bretonneux, France
| | - Cynthia Domenech-Jaulneau
- Service Régional, Direction Régionale des Affaires culturelles d’Île-de-France, UMR 8215 Trajectoires (CNRS-University Paris I), Paris, France
| | - Cécile Paresys
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Isabelle Richard
- INRAP Grand Est, Châlons-en-Champagne, France
- UMR 6472 CEPAM (CNRS-Nice University), Nice, France
| | - Thierry Grange
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eva-Maria Geigl
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
5
|
Primorac D, Šarac J, Havaš Auguštin D, Novokmet N, Bego T, Pinhasi R, Šlaus M, Novak M, Marjanović D. Y Chromosome Story-Ancient Genetic Data as a Supplementary Tool for the Analysis of Modern Croatian Genetic Pool. Genes (Basel) 2024; 15:748. [PMID: 38927684 PMCID: PMC11202852 DOI: 10.3390/genes15060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Due to its turbulent demographic history, marked by extensive settlement and gene flow from diverse regions of Eurasia, Southeastern Europe (SEE) has consistently served as a genetic crossroads between East and West and a junction for the migrations that reshaped Europe's population. SEE, including modern Croatian territory, was a crucial passage from the Near East and even more distant regions and human populations in this region, as almost any other European population represents a remarkable genetic mixture. Modern humans have continuously occupied this region since the Upper Paleolithic era, and different (pre)historical events have left a distinctive genetic signature on the historical narrative of this region. Our views of its history have been mostly renewed in the last few decades by extraordinary data obtained from Y-chromosome studies. In recent times, the international research community, bringing together geneticists and archaeologists, has steadily released a growing number of ancient genomes from this region, shedding more light on its complex past population dynamics and shaping the genetic pool in Croatia and this part of Europe.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Regiomed Kliniken, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- National Forensic Sciences University, Gandhinagar 382007, India
| | - Jelena Šarac
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | - Dubravka Havaš Auguštin
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | - Natalija Novokmet
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | - Tamer Bego
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Mario Šlaus
- Anthropological Center, Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, 6000 Koper, Slovenia
| | - Damir Marjanović
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
- International Burch University, 71000 Sarajevo, Bosnia and Herzegovina
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
7
|
Silva M, Booth T, Moore J, Anastasiadou K, Walker D, Gilardet A, Barrington C, Kelly M, Williams M, Henderson M, Smith A, Bowsher D, Montgomery J, Skoglund P. An individual with Sarmatian-related ancestry in Roman Britain. Curr Biol 2024; 34:204-212.e6. [PMID: 38118448 DOI: 10.1016/j.cub.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
In the second century CE the Roman Empire had increasing contact with Sarmatians, nomadic Iranian speakers occupying an area stretching from the Pontic-Caspian steppe to the Carpathian mountains, both in the Caucasus and in the Danubian borders of the empire.1,2,3 In 175 CE, following their defeat in the Marcomannic Wars, emperor Marcus Aurelius drafted Sarmatian cavalry into Roman legions and deployed 5,500 Sarmatian soldiers to Britain, as recorded by contemporary historian Cassius Dio.4,5 Little is known about where the Sarmatian cavalry were stationed, and no individuals connected with this historically attested event have been identified to date, leaving its impact on Britain largely unknown. Here we document Caucasus- and Sarmatian-related ancestry in the whole genome of a Roman-period individual (126-228 calibrated [cal.] CE)-an outlier without traceable ancestry related to local populations in Britain-recovered from a farmstead site in present-day Cambridgeshire, UK. Stable isotopes support a life history of mobility during childhood. Although several scenarios are possible, the historical deployment of Sarmatians to Britain provides a parsimonious explanation for this individual's extraordinary life history. Regardless of the factors behind his migrations, these results highlight how long-range mobility facilitated by the Roman Empire impacted provincial locations outside of urban centers.
Collapse
Affiliation(s)
- Marina Silva
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Booth
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joanna Moore
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom
| | - Kyriaki Anastasiadou
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Don Walker
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alexandre Gilardet
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Barrington
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Monica Kelly
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mia Williams
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Henderson
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Alex Smith
- Headland Archaeology, 13 Jane Street, Edinburgh EH6 5HE, UK
| | - David Bowsher
- Museum of London Archaeology (MOLA), Mortimer Wheeler House, 46 Eagle Wharf Road, London N1 7ED, UK
| | - Janet Montgomery
- Department of Archaeology, Durham University, Lower Mountjoy, South Rd, DH1 3LE, Durham, United Kingdom.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
8
|
Gerber D, Szeifert B, Székely O, Egyed B, Gyuris B, Giblin JI, Horváth A, Köhler K, Kulcsár G, Kustár Á, Major I, Molnár M, Palcsu L, Szeverényi V, Fábián S, Mende BG, Bondár M, Ari E, Kiss V, Szécsényi-Nagy A. Interdisciplinary Analyses of Bronze Age Communities from Western Hungary Reveal Complex Population Histories. Mol Biol Evol 2023; 40:msad182. [PMID: 37562011 PMCID: PMC10473862 DOI: 10.1093/molbev/msad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
In this study, we report 21 ancient shotgun genomes from present-day Western Hungary, from previously understudied Late Copper Age Baden, and Bronze Age Somogyvár-Vinkovci, Kisapostag, and Encrusted Pottery archeological cultures (3,530-1,620 cal Bce). Our results indicate the presence of high steppe ancestry in the Somogyvár-Vinkovci culture. They were then replaced by the Kisapostag group, who exhibit an outstandingly high (up to ∼47%) Mesolithic hunter-gatherer ancestry, despite this component being thought to be highly diluted by the time of the Early Bronze Age. The Kisapostag population contributed the genetic basis for the succeeding community of the Encrusted Pottery culture. We also found an elevated hunter-gatherer component in a local Baden culture-associated individual, but no connections were proven to the Bronze Age individuals. The hunter-gatherer ancestry in Kisapostag is likely derived from two main sources, one from a Funnelbeaker or Globular Amphora culture-related population and one from a previously unrecognized source in Eastern Europe. We show that this ancestry not only appeared in various groups in Bronze Age Central Europe but also made contributions to Baltic populations. The social structure of Kisapostag and Encrusted Pottery cultures is patrilocal, similarly to most contemporaneous groups. Furthermore, we developed new methods and method standards for computational analyses of ancient DNA, implemented to our newly developed and freely available bioinformatic package. By analyzing clinical traits, we found carriers of aneuploidy and inheritable genetic diseases. Finally, based on genetic and anthropological data, we present here the first female facial reconstruction from the Bronze Age Carpathian Basin.
Collapse
Affiliation(s)
- Dániel Gerber
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bea Szeifert
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Székely
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Balázs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Gyuris
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Julia I Giblin
- Department of Sociology and Anthropology, Quinnipiac University, Hamden, CT, USA
| | - Anikó Horváth
- Isotope Climatology and Environmental Research (ICER) Centre, Institute for Nuclear Research, Debrecen, Hungary
| | - Kitti Köhler
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Gabriella Kulcsár
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | | | - István Major
- Isotope Climatology and Environmental Research (ICER) Centre, Institute for Nuclear Research, Debrecen, Hungary
| | - Mihály Molnár
- Isotope Climatology and Environmental Research (ICER) Centre, Institute for Nuclear Research, Debrecen, Hungary
| | - László Palcsu
- Isotope Climatology and Environmental Research (ICER) Centre, Institute for Nuclear Research, Debrecen, Hungary
| | | | | | - Balázs Gusztáv Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Mária Bondár
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Eszter Ari
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Viktória Kiss
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| |
Collapse
|
9
|
Skourtanioti E, Ringbauer H, Gnecchi Ruscone GA, Bianco RA, Burri M, Freund C, Furtwängler A, Gomes Martins NF, Knolle F, Neumann GU, Tiliakou A, Agelarakis A, Andreadaki-Vlazaki M, Betancourt P, Hallager BP, Jones OA, Kakavogianni O, Kanta A, Karkanas P, Kataki E, Kissas K, Koehl R, Kvapil L, Maran J, McGeorge PJP, Papadimitriou A, Papathanasiou A, Papazoglou-Manioudaki L, Paschalidis K, Polychronakou-Sgouritsa N, Preve S, Prevedorou EA, Price G, Protopapadaki E, Schmidt-Schultz T, Schultz M, Shelton K, Wiener MH, Krause J, Jeong C, Stockhammer PW. Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nat Ecol Evol 2023; 7:290-303. [PMID: 36646948 PMCID: PMC9911347 DOI: 10.1038/s41559-022-01952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/11/2022] [Indexed: 01/18/2023]
Abstract
The Neolithic and Bronze Ages were highly transformative periods for the genetic history of Europe but for the Aegean-a region fundamental to Europe's prehistory-the biological dimensions of cultural transitions have been elucidated only to a limited extent so far. We have analysed newly generated genome-wide data from 102 ancient individuals from Crete, the Greek mainland and the Aegean Islands, spanning from the Neolithic to the Iron Age. We found that the early farmers from Crete shared the same ancestry as other contemporaneous Neolithic Aegeans. In contrast, the end of the Neolithic period and the following Early Bronze Age were marked by 'eastern' gene flow, which was predominantly of Anatolian origin in Crete. Confirming previous findings for additional Central/Eastern European ancestry in the Greek mainland by the Middle Bronze Age, we additionally show that such genetic signatures appeared in Crete gradually from the seventeenth to twelfth centuries BC, a period when the influence of the mainland over the island intensified. Biological and cultural connectedness within the Aegean is also supported by the finding of consanguineous endogamy practiced at high frequencies, unprecedented in the global ancient DNA record. Our results highlight the potential of archaeogenomic approaches in the Aegean for unravelling the interplay of genetic admixture, marital and other cultural practices.
Collapse
Affiliation(s)
- Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Guido Alberto Gnecchi Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Raffaela Angelina Bianco
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Marta Burri
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Cäcilia Freund
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Anja Furtwängler
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nuno Filipe Gomes Martins
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Florian Knolle
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Anthi Tiliakou
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | | | | | - Philip Betancourt
- Institute for Aegean Prehistory, Temple University, Philadelphia, PA, USA
| | | | - Olivia A Jones
- Department of Sociology and Anthropology, West Virginia University, Morgantown, WV, USA
| | - Olga Kakavogianni
- Ephorate of Antiquities of East Attica, Hellenic Ministry of Culture and Sports, Athens, Greece
| | - Athanasia Kanta
- Antiquities for the Heraklion Prefecture (Director Emerita), Hellenic Ministry of Culture and Sports, Heraklion, Greece
| | - Panagiotis Karkanas
- Malcolm H. Wiener Laboratory for Archaeological Science, American School of Classical Studies at Athens, Athens, Greece
| | - Efthymia Kataki
- Ephorate of Antiquities of Chania, Hellenic Ministry of Culture and Sports, Chania, Greece
| | - Konstantinos Kissas
- Ephorate of Antiquities of Arcadia, Hellenic Ministry of Culture and Sports, Tripoli, Greece
| | - Robert Koehl
- Classical and Oriental Studies, Hunter College, New York, NY, USA
| | - Lynne Kvapil
- Department of History, Anthropology, and Classics, Butler University, Indianapolis, IN, USA
| | - Joseph Maran
- Institute for Prehistory, Protohistory and Near Eastern Archaeology, University of Heidelberg, Heidelberg, Germany
| | | | - Alkestis Papadimitriou
- Ephorate of Antiquities of Argolida, Hellenic Ministry of Culture and Sports, Nafplio, Greece
| | - Anastasia Papathanasiou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Ministry of Culture and Sports, Athens, Greece
| | | | | | | | - Sofia Preve
- Ephorate of Antiquities of Chania, Hellenic Ministry of Culture and Sports, Chania, Greece
| | - Eleni-Anna Prevedorou
- Malcolm H. Wiener Laboratory for Archaeological Science, American School of Classical Studies at Athens, Athens, Greece
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | | | - Eftychia Protopapadaki
- Ephorate of Antiquities of Chania, Hellenic Ministry of Culture and Sports, Chania, Greece
| | | | - Michael Schultz
- Center of Anatomy, University of Göttingen, Göttingen, Germany
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Kim Shelton
- Department of Ancient Greek and Roman Studies, University of California, Berkeley, CA, USA
| | | | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean (MHAAM), Leipzig, Germany.
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- Institute for Pre- and Protohistoric Archaeology and Archaeology of the Roman Provinces, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
10
|
Marciniak S, Bergey CM, Silva AM, Hałuszko A, Furmanek M, Veselka B, Velemínský P, Vercellotti G, Wahl J, Zariņa G, Longhi C, Kolář J, Garrido-Pena R, Flores-Fernández R, Herrero-Corral AM, Simalcsik A, Müller W, Sheridan A, Miliauskienė Ž, Jankauskas R, Moiseyev V, Köhler K, Király Á, Gamarra B, Cheronet O, Szeverényi V, Kiss V, Szeniczey T, Kiss K, Zoffmann ZK, Koós J, Hellebrandt M, Maier RM, Domboróczki L, Virag C, Novak M, Reich D, Hajdu T, von Cramon-Taubadel N, Pinhasi R, Perry GH. An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers. Proc Natl Acad Sci U S A 2022; 119:e2106743119. [PMID: 35389750 PMCID: PMC9169634 DOI: 10.1073/pnas.2106743119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Christina M. Bergey
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854
| | - Ana Maria Silva
- Research Centre for Anthropology and Health (Centro de Investigação em Antropologia e Saúde - CIAS), Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- Archeology Center of the University of Lisbon (UNIARQ), University of Lisbon, Lisbon 1600-214, Portugal
| | - Agata Hałuszko
- Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
- Archeolodzy.org Foundation, Wrocław 50-316, Poland
| | - Mirosław Furmanek
- Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
| | - Barbara Veselka
- Department of Chemistry, Analytical Environmental and Geo-Chemistry Research Unit, Vrije Univeristeit Brussels, Brussels 1050, Belgium
- Department of Art Studies and Archaeology, Maritime Cultures Research Institute, Vrije Univeristeit Brussels, Brussels 1050, Belgium
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115-79, Czech Republic
| | - Giuseppe Vercellotti
- Department of Anthropology, Ohio State University, Columbus, OH 43210
- Institute for Research and Learning in Archaeology and Bioarchaeology, Columbus, OH 43215
| | - Joachim Wahl
- Institute for Scientific Archaeology, Working Group Palaeoanthropology, University of Tübingen, Tübingen 72074, Germany
| | - Gunita Zariņa
- Institute of Latvian History, University of Latvia, Riga 1050, Latvia
| | - Cristina Longhi
- Soprintendenza Archeologia, Belle Arti e Paesaggio, Rome 00186, Italy
| | - Jan Kolář
- Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Průhonice 252-43, Czech Republic
- Institute of Archaeology and Museology, Masaryk University, Brno 602-00, Czech Republic
| | - Rafael Garrido-Pena
- Department of Prehistory and Archaeology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | - Angela Simalcsik
- Olga Necrasov Center for Anthropological Research, Romanian Academy - Iasi Branch, Iasi 700481, Romania
- Orheiul Vechi Cultural-Natural Reserve, Orhei 3506, Republic of Moldova
| | - Werner Müller
- Laboratoire d'archéozoologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Alison Sheridan
- Department of Scottish History & Archaeology, National Museums Scotland, Edinburgh EH1 1JF, Scotland
| | - Žydrūnė Miliauskienė
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius 01513, Lithuania
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius 01513, Lithuania
| | - Vyacheslav Moiseyev
- Department of Physical Anthropology, Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Kitti Köhler
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Ágnes Király
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Beatriz Gamarra
- Institut Català de Paleoecologia Humana i Evolució Social, Tarragona 43007, Spain
- Departament d’Història i Història de l’Art, Universitat Rovira i Virgili, Tarragona 43003, Spain
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna 1030, Austria
| | - Vajk Szeverényi
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
- Department of Archaeology, Déri Múzeum, Debrecen 4026, Hungary
| | - Viktória Kiss
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
| | - Krisztián Kiss
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
- Department of Anthropology, Hungarian Natural History Museum, Budapest 1083, Hungary
| | | | - Judit Koós
- Department of Archaeology, Herman Ottó Museum, Miskolc 3530, Hungary
| | | | - Robert M. Maier
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - László Domboróczki
- Department of Archaeology, István Dobó Castle Museum, Eger 3300, Hungary
| | - Cristian Virag
- Department of Archaeology, Satu Mare County Museum, Satu Mare 440031, Romania
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- The Max Planck–Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Boston, MA 02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- HHMI, Harvard Medical School, Cambridge, MA 02138
| | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, NY 14261-0026
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna 1030, Austria
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Deutsche Forschungsgemeinschaft (DFG) Center for Advanced Studies, University of Tübingen, Tübingen 72074, Germany
| |
Collapse
|