1
|
Tecchio F, Bertoli M, Sbragia E, Stara S, Pasqualetti P, L'Abbate T, Croce P, Pizzichino A, Cancelli A, Armonaite K, Cecconi F, Paulon L, Inglese M. Fatigue relief in multiple sclerosis by personalized neuromodulation: A multicenter pilot study [FaremusGE]. Mult Scler Relat Disord 2025; 94:106276. [PMID: 39842388 DOI: 10.1016/j.msard.2025.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND A recent application of the GRADE guidelines indicated Faremus, a 5-day neuromodulation for 15 min per day via transcranial direct current stimulation (tDCS), as medium to highly recommendable for alleviating fatigue in multiple sclerosis (MS). METHODS With this pilot study we aimed to evaluate the feasibility, acceptance, safety, and effectiveness of the Faremus treatment carried out in a multicenter context. The Rome unit prepared the intervention, supplied the personalized electrodes to the San Martino Hospital in Genova, where the neurological team enrolled the population of fatigued people with multiple sclerosis (PwMS) and carried out the treatment. RESULTS All 17 enrolled patients completed treatment, reporting optimal acceptance and safety when using Faremus in the multicenter setting. The team involved, including neurologists, neurophysiopathology technicians, engineers, physicists, and psychologists expressed high appreciation (average score 8 out of 10). The treatment improved fatigue symptoms by an average of 27%, to levels comparable with previous studies. Similarly, mild depressive symptoms improved by an average of 38%. CONCLUSIONS The Faremus personalized electroceutical intervention, a 5-day anodal tDCS over bilateral whole-body somatosensory cortex with occipital cathode, is well accepted and can be applied feasibly, safely and effectively in a multicenter setting, offering a reliable tool to relieve fatigue-related symptoms, thus supporting the quality of life of fatigued people with MS. The present study lays a starting point for the involvement of multiple MS units nationwide in offering therapeutic enrichment for their fatigued patients.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy.
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Elvira Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Neurology, Galliera Hospital, Genoa, Italy
| | - Silvia Stara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Section of Medical Statistics, Sapienza Università di Roma, Rome, Italy
| | - Teresa L'Abbate
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Uninettuno University, Rome, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | | | - Andrea Cancelli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | | | - Federico Cecconi
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Independent Researcher, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
2
|
Diaz-Quiroz M, Chicue-Cuervo PC, Garcia-Moreno L, Gaviria-Carrillo M, Talero-Gutierrez C, Palacios-Espinosa X. Fatigue in multiple sclerosis: A scoping review of pharmacological and nonpharmacological interventions. Mult Scler J Exp Transl Clin 2025; 11:20552173241312527. [PMID: 39949505 PMCID: PMC11822839 DOI: 10.1177/20552173241312527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction Fatigue is a highly prevalent symptom in people with multiple sclerosis. It demands careful assessment and prompt intervention to improve their quality of life and overall burden of disease. This scoping review aims to provide a comprehensive synthesis and update of the existing evidence on the effectiveness of different pharmacological and nonpharmacological interventions for multiple sclerosis (MS)-related fatigue. Methods To ensure the transparency and quality of the articles chosen for this scoping review, the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols extension for Scoping Reviews was used. Exclusively randomized controlled trials published between 2016 and 2023 were included. Results Twenty-eight articles were analyzed. We found that pharmacological interventions are few and have included the use of Amantadine, Ondansetron, Methylphenidate, and Modafinil, with little effects on fatigue. Nonpharmacological interventions are diverse and include cognitive behavioral therapy, guided imagery, phototherapy, exercise, brain stimulation, and lavender administration with evidence of a statistically significant decrease in fatigue. Conclusions and Discussion Current evidence on the effectiveness of pharmacological and nonpharmacological interventions is inconclusive. Lack of knowledge of the pathophysiology of fatigue limits its prevention, control, and management recommendations. A comprehensive and interdisciplinary approach is required to manage this symptom in patients with MS.
Collapse
Affiliation(s)
- Mateo Diaz-Quiroz
- Neuroscience Research Group (NeURos), Centro de Neurociencia NeURovitae, Cra 24#63C-69, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Paula Catalina Chicue-Cuervo
- Psychology Program, School of Medicine and Health Sciences, Universidad del Rosario, Psycho-oncology and Palliative Care Research Hub, Bogotá, Colombia
| | - Luna Garcia-Moreno
- Psychology Program, School of Medicine and Health Sciences, Universidad del Rosario, Psycho-oncology and Palliative Care Research Hub, Bogotá, Colombia
| | - Mariana Gaviria-Carrillo
- Neuroscience Research Group (NeURos), Centro de Neurociencia NeURovitae, Cra 24#63C-69, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Talero-Gutierrez
- Neuroscience Research Group (NeURos), Centro de Neurociencia NeURovitae, Cra 24#63C-69, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ximena Palacios-Espinosa
- Psychology Program, School of Medicine and Health Sciences, Universidad del Rosario, Individual, Family and Society Research Group, Bogotá, Colombia
| |
Collapse
|
3
|
Grifoni J, Crispiatico V, Castagna A, Quartarone A, Converti RM, Ramella M, Granata G, Di Iorio R, Brancucci A, Bevacqua G, Pagani M, L'Abbate T, Armonaite K, Paulon L, Tecchio F. Musician's dystonia: an opinion on novel treatment strategies. Front Neurosci 2024; 18:1393767. [PMID: 38660229 PMCID: PMC11041626 DOI: 10.3389/fnins.2024.1393767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Joy Grifoni
- Uninettuno International University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | | | | | | | | | | | - Giuseppe Granata
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma “Foro Italico”, Rome, Italy
| | | | - Marco Pagani
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | - Teresa L'Abbate
- Uninettuno International University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | - Karolina Armonaite
- Uninettuno International University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
- Independent Researcher, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Rome, Italy
| |
Collapse
|
4
|
Lee SH, Kim YK. Application of Transcranial Direct and Alternating Current Stimulation (tDCS and tACS) on Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:129-143. [PMID: 39261427 DOI: 10.1007/978-981-97-4402-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The exploration of brain stimulation methods offers a promising avenue to overcome the shortcomings of traditional drug therapies and psychological treatments for major depressive disorder (MDD). Over the past years, there has been an increasing focus on transcranial electrical stimulation (tES), notably for its ease of use and potentially fewer side effects. This chapter delves into the use of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), which are key components of tES, in managing depression. It begins by introducing tDCS and tACS, summarizing their action mechanisms. Following this introduction, the chapter provides an in-depth analysis of existing meta-analyses, systematic reviews, clinical studies, and case reports that have applied tES in MDD treatment. It also considers the role of tES in personalized medicine by looking at specific patient groups and evaluating research on possible biomarkers that could predict how patients with MDD respond to tES therapy.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Bertoli M, Tataranni A, Porziani S, Pasqualetti P, Gianni E, Grifoni J, L’Abbate T, Armonaite K, Conti L, Cancelli A, Cottone C, Marinozzi F, Bini F, Cecconi F, Tecchio F. Effects on Corticospinal Tract Homology of Faremus Personalized Neuromodulation Relieving Fatigue in Multiple Sclerosis: A Proof-of-Concept Study. Brain Sci 2023; 13:brainsci13040574. [PMID: 37190539 DOI: 10.3390/brainsci13040574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives: Fatigue in multiple sclerosis (MS) is a frequent and invalidating symptom, which can be relieved by non-invasive neuromodulation, which presents only negligible side effects. A 5-day transcranial direct-current stimulation, 15 min per day, anodically targeting the somatosensory representation of the whole body against a larger occipital cathode was efficacious against MS fatigue (fatigue relief in multiple sclerosis, Faremus treatment). The present proof-of-concept study tested the working hypothesis that Faremus S1 neuromodulation modifies the homology of the dominant and non-dominant corticospinal (CST) circuit recruitment. Methods: CST homology was assessed via the Fréchet distance between the morphologies of motor potentials (MEPs) evoked by transcranial magnetic stimulation in the homologous left- and right-hand muscles of 10 fatigued MS patients before and after Faremus. Results: In the absence of any change in MEP features either as differences between the two body sides or as an effect of the treatment, Faremus changed in physiological direction the CST’s homology. Faremus effects on homology were more evident than recruitment changes within the dominant and non-dominant sides. Conclusions: The Faremus-related CST changes extend the relevance of the balance between hemispheric homologs to the homology between body sides. With this work, we contribute to the development of new network-sensitive measures that can provide new insights into the mechanisms of neuronal functional patterning underlying relevant symptoms.
Collapse
|
6
|
Armonaite K, Nobili L, Paulon L, Balsi M, Conti L, Tecchio F. Local neurodynamics as a signature of cortical areas: new insights from sleep. Cereb Cortex 2023; 33:3284-3292. [PMID: 35858209 DOI: 10.1093/cercor/bhac274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep crucial for the animal survival is accompanied by huge changes in neuronal electrical activity over time, the neurodynamics. Here, drawing on intracranial stereo-electroencephalographic (sEEG) recordings from the Montreal Neurological Institute (MNI), we analyzed local neurodynamics in the waking state at rest and during the N2, N3, and rapid eye movement (REM) sleep phases. Higuchi fractal dimension (HFD)-a measure of signal complexity-was studied as a feature of the local neurodynamics of the primary motor (M1), somatosensory (S1), and auditory (A1) cortices. The key working hypothesis, that the relationships between local neurodynamics preserve in all sleep phases despite the neurodynamics complexity reduces in sleep compared with wakefulness, was supported by the results. In fact, while HFD awake > REM > N2 > N3 (P < 0.001 consistently), HFD in M1 > S1 > A1 in awake and all sleep stages (P < 0.05 consistently). Also power spectral density was studied for consistency with previous investigations. Meaningfully, we found a local specificity of neurodynamics, well quantified by the fractal dimension, expressed in wakefulness and during sleep. We reinforce the idea that neurodynamic may become a new criterion for cortical parcellation, prospectively improving the understanding and ability of compensatory interventions for behavioral disorders.
Collapse
Affiliation(s)
- Karolina Armonaite
- Faculty of Psychology, Uninettuno University, Corso V. Emanuele II, n. 39, 00186, Rome, Italy
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Via Palestro, n. 32, 00185, Rome, Italy
| | - Lino Nobili
- Child Neurology and Psychiatry, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, n. 5, 16147, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, n. 3, 16132, Genoa, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Via Palestro, n. 32, 00185, Rome, Italy
| | - Marco Balsi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University, Via Eudossiana, n. 18, 00184, Rome
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Corso V. Emanuele II, n. 39, 00186, Rome, Italy
- INFN - Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata, Via della Ricerca Scientifica, n.1, 00133, Rome, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Via Palestro, n. 32, 00185, Rome, Italy
- Faculty of Psychology, Uninettuno University, Corso V. Emanuele II, n. 39, 00186, Rome, Italy
| |
Collapse
|
7
|
Gianni E, Tecchio F. Book review: Transcranial direct current stimulation in neuropsychiatric disorders. Clinical principles and management. Front Neurosci 2022. [DOI: 10.3389/fnins.2022.1082143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Functional Source Separation-Identified Epileptic Network: Analysis Pipeline. Brain Sci 2022; 12:brainsci12091179. [PMID: 36138915 PMCID: PMC9496980 DOI: 10.3390/brainsci12091179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
This proof-of-concept (PoC) study presents a pipeline made by two blocks: 1. the identification of the network that generates interictal epileptic activity; and 2. the study of the time course of the electrical activity that it generates, called neurodynamics, and the study of its functional connectivity to the other parts of the brain. Network identification is achieved with the Functional Source Separation (FSS) algorithm applied to electroencephalographic (EEG) recordings, the neurodynamics quantified through signal complexity with the Higuchi Fractal Dimension (HFD), and functional connectivity with the Directed Transfer Function (DTF). This PoC is enhanced by the data collected before and after neuromodulation via transcranial Direct Current Stimulation (tDCS, both Real and Sham) in a single drug-resistant epileptic person. We observed that the signal complexity of the epileptogenic network, reduced in the pre-Real, pre-Sham, and post-Sham, reached the level of the rest of the brain post-Real tDCS. DTF changes post-Real tDCS were maintained after one month. The proposed approach can represent a valuable tool to enhance understanding of the relationship between brain neurodynamics characteristics, the effects of non-invasive brain stimulation, and epileptic symptoms.
Collapse
|
9
|
Franca T, Andrea C, Arianna P, Teresa L, Eugenia G, Massimo B, Luca P, Silvana Z, Alessandro G, Domenico L, Patrizio P, Massimiliano M, Maddalena FM. Home treatment against fatigue in multiple sclerosis by a personalized, bilateral whole-body somatosensory cortex stimulation. Mult Scler Relat Disord 2022; 63:103813. [DOI: 10.1016/j.msard.2022.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
|
10
|
Armonaite K, Bertoli M, Paulon L, Gianni E, Balsi M, Conti L, Tecchio F. Neuronal Electrical Ongoing Activity as Cortical Areas Signature: An Insight from MNI Intracerebral Recording Atlas. Cereb Cortex 2021; 32:2895-2906. [PMID: 34727186 DOI: 10.1093/cercor/bhab389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
The time course of the neuronal activity in the brain network, the neurodynamics, reflects the structure and functionality of the generating neuronal pools. Here, using the intracranial stereo-electroencephalographic (sEEG) recordings of the public Montreal Neurological Institute (MNI) atlas, we investigated the neurodynamics of primary motor (M1), somatosensory (S1) and auditory (A1) cortices measuring power spectral densities (PSD) and Higuchi fractal dimension (HFD) in the same subject (M1 vs. S1 in 16 subjects, M1 vs. A1 in 9, S1 vs. A1 in 6). We observed specific spectral features in M1, which prevailed above beta band, S1 in the alpha band, and A1 in the delta band. M1 HFD was higher than S1, both higher than A1. A clear distinction of neurodynamics properties of specific primary cortices supports the efforts in cortical parceling based on this expression of the local cytoarchitecture and connectivity. In this perspective, we selected within the MNI intracortical database a first set of primary motor, somatosensory and auditory cortices' representatives to query in recognizing ongoing patterns of neuronal communication. Potential clinical impact stands primarily in exploiting such exchange patterns to enhance the efficacy of neuromodulation intervention to cure symptoms secondary to neuronal activity unbalances.
Collapse
Affiliation(s)
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'Gabriele D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy.,Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Marco Balsi
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University, Rome 00185, Italy
| | - Livio Conti
- Faculty of Engineering, Uninettuno University, Rome 00186, Italy.,INFN - Istituto Nazionale di Fisica Nucleare, Sezione Roma Tor Vergata, Rome 00133, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies - Consiglio Nazionale delle Ricerche, Rome 00185, Italy
| |
Collapse
|