1
|
Liu C, Li H, Feng S, Zhang Z, Huang M, Lin S, Zhong L, Huang D, Huang Y, Wu K, Wu F. Alterations in structural and functional magnetic resonance imaging associated with cognitive function in patients with treatment-naïve first-episode major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111367. [PMID: 40246055 DOI: 10.1016/j.pnpbp.2025.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Cognitive impairment is a prominent feature in the clinical presentation of major depressive disorder (MDD). Patients with MDD have brain structural and functional abnormalities. However, the association between such abnormalities and cognitive function remains unclear. METHODS For this research, 105 patients with treatment-naïve first-episode MDD and 53 healthy controls (HCs) underwent magnetic resonance imaging (MRI) and neuropsychological assessment. The MRI main indicators included sulcus depth (SD), local gyration index (LGI) and amplitude of low frequency fluctuations (ALFF). The MATRICS Consensus Cognitive Battery (MCCB) was used for neuropsychological assessment. The support vector machine (SVM) was used to assess the accuracy of the classification. RESULTS Compared with the HCs, the patients with MDD had significant decreases in five dimensions of the MCCB, as well as in SD in the left superior temporal sulcus and inferior parietal cortex, but had an increases in LGI in the left precuneus cortex and pericalcarine cortex and ALFF of the left calcarine fissure and surrounding cortex. In addition, the visual learning score (one MCCB dimension) was negatively associated with the SD of the left superior temporal sulcus and positively associated with the ALFF of left calcarine fissure and surrounding cortex. The SVM has a relatively good ability to distinguish patients with MDD and HCs. CONCLUSION Cognitive impairment in patients with MDD was associated with abnormal an SD and ALFF. These findings help to further understand cognitive impairment in patients with MDD.
Collapse
Affiliation(s)
- Chenyu Liu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziyun Zhang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Miaolan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shisong Lin
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangda Zhong
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dongchang Huang
- The town of Dalang Experimental Primary School, Dongguan, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Ip IB, Clarke WT, Wyllie A, Tracey K, Matuszewski J, Jbabdi S, Starling L, Templer S, Willis H, Breach L, Parker AJ, Bridge H. The relationship between visual acuity loss and GABAergic inhibition in amblyopia. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 40110226 PMCID: PMC11917722 DOI: 10.1162/imag_a_00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 03/22/2025]
Abstract
Early childhood experience alters visual development, a process exemplified by amblyopia, a common neurodevelopmental condition resulting in cortically reduced vision in one eye. Visual deficits in amblyopia may be a consequence of abnormal suppressive interactions in the primary visual cortex by inhibitory neurotransmitter γ-aminobutyric acid (GABA). We examined the relationship between visual acuity loss and GABA+ in adult human participants with amblyopia. Single-voxel proton magnetic resonance spectroscopy (MRS) data were collected from the early visual cortex (EVC) and posterior cingulate cortex (control region) of 28 male and female adults with current or past amblyopia while they viewed flashing checkerboards monocularly, binocularly, or while they had their eyes closed. First, we compared GABA+ concentrations between conditions to evaluate suppressive binocular interactions. Then, we correlated the degree of visual acuity loss with GABA+ levels to test whether GABAergic inhibition could explain visual acuity deficits. Visual cortex GABA+ was not modulated by viewing condition, and we found weak evidence for a negative correlation between visual acuity deficits and GABA+. These findings suggest that reduced vision in one eye due to amblyopia is not strongly linked to GABAergic inhibition in the visual cortex. We advanced our understanding of early experience dependent plasticity in the human brain by testing the association between visual acuity deficits and visual cortex GABA in amblyopes of the most common subtypes. Our study shows that the relationship was not as clear as expected and provides avenues for future investigation.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abigail Wyllie
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kathleen Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jacek Matuszewski
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lucy Starling
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sophie Templer
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hanna Willis
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Laura Breach
- Orthoptics Department, Oxford Eye Hospital, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J Parker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Institut für Biologie, Otto-Von-Guericke Universität, Magdeburg, Germany
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Masri S, Mowery TM, Fair R, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by genetic restoration of cortical inhibition. Proc Natl Acad Sci U S A 2024; 121:e2311570121. [PMID: 38830095 PMCID: PMC11181144 DOI: 10.1073/pnas.2311570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, New York, NY10003
| | - Todd M. Mowery
- Department of Otolaryngology, Rutgers, New Brunswick, NJ08901
| | - Regan Fair
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute at New York University Langone School of Medicine, New York, NY10016
| |
Collapse
|
4
|
Killebrew KW, Moser HR, Grant AN, Marjańska M, Sponheim SR, Schallmo MP. Faster bi-stable visual switching in psychosis. Transl Psychiatry 2024; 14:201. [PMID: 38714650 PMCID: PMC11076514 DOI: 10.1038/s41398-024-02913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception has been observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in the visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in the visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels, specifically disorganization, across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.
Collapse
Affiliation(s)
- Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Yamada T, Watanabe T, Sasaki Y. Plasticity-stability dynamics during post-training processing of learning. Trends Cogn Sci 2024; 28:72-83. [PMID: 37858389 PMCID: PMC10842181 DOI: 10.1016/j.tics.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Learning continues beyond the end of training. Post-training learning is supported by changes in plasticity and stability in the brain during both wakefulness and sleep. However, the lack of a unified measure for assessing plasticity and stability dynamics during training and post-training periods has limited our understanding of how these dynamics shape learning. Focusing primarily on procedural learning, we integrate work using behavioral paradigms and a recently developed measure, the excitatory-to-inhibitory (E/I) ratio, to explore the delicate balance between plasticity and stability and its relationship to post-training learning. This reveals plasticity-stability cycles during both wakefulness and sleep that enhance learning and protect it from new learning during post-training processing.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Kam KY, Chang DHF. Sensory eye dominance plasticity in the human adult visual cortex. Front Neurosci 2023; 17:1250493. [PMID: 37746154 PMCID: PMC10513037 DOI: 10.3389/fnins.2023.1250493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Sensory eye dominance occurs when the visual cortex weighs one eye's data more heavily than those of the other. Encouragingly, mechanisms underlying sensory eye dominance in human adults retain a certain degree of plasticity. Notably, perceptual training using dichoptically presented motion signal-noise stimuli has been shown to elicit changes in sensory eye dominance both in visually impaired and normal observers. However, the neural mechanisms underlying these learning-driven improvements are not well understood. Here, we measured changes in fMRI responses before and after a five-day visual training protocol to determine the neuroplastic changes along the visual cascade. Fifty visually normal observers received training on a dichoptic or binocular variant of a signal-in-noise (left-right) motion discrimination task over five consecutive days. We show significant shifts in sensory eye dominance following training, but only for those who received dichoptic training. Pattern analysis of fMRI responses revealed that responses of V1 and hMT+ predicted sensory eye dominance for both groups, but only before training. After dichoptic (but not binocular) visual training, responses of V1 changed significantly, and were no longer able to predict sensory eye dominance. Our data suggest that perceptual training-driven changes in eye dominance are driven by a reweighting of the two eyes' data in the primary visual cortex. These findings may provide insight into developing region-targeted rehabilitative paradigms for the visually impaired, particularly those with severe binocular imbalance.
Collapse
Affiliation(s)
- Ka Yee Kam
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dorita H. F. Chang
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Bridge H, Ip IB, Parker AJ. Investigating the human binocular visual system using multi-modal magnetic resonance imaging. Perception 2023; 52:441-458. [PMID: 37272064 DOI: 10.1177/03010066231178664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Having two forward-facing eyes with slightly different viewpoints enables animals, including humans, to discriminate fine differences in depth (disparities), which can facilitate interaction with the world. The binocular visual system starts in the primary visual cortex because that is where information from the eyes is integrated for the first time. Magnetic resonance imaging (MRI) is an ideal tool to non-invasively investigate this system since it can provide a range of detailed measures about structure, function, neurochemistry and connectivity of the human brain. Since binocular disparity is used for both action and object recognition, the binocular visual system is a valuable model system in neuroscience for understanding how basic sensory cues are transformed into behaviourally relevant signals. In this review, we consider how MRI has contributed to the understanding of binocular vision and depth perception in the human brain. Firstly, MRI provides the ability to image the entire brain simultaneously to compare the contribution of specific visual areas to depth perception. A large body of work using functional MRI has led to an understanding of the extensive networks of brain areas involved in depth perception, but also the fine-scale macro-organisation for binocular processing within individual visual areas. Secondly, MRI can uncover mechanistic information underlying binocular combination with the use of MR spectroscopy. This method can quantify neurotransmitters including GABA and glutamate within restricted regions of the brain, and evaluate the role of these inhibitory and excitatory neurochemicals in binocular vision. Thirdly, it is possible to measure the nature and microstructure of pathways underlying depth perception using diffusion MRI. Understanding these pathways provides insight into the importance of the connections between areas implicated in depth perception. Finally, MRI can help to understand changes in the visual system resulting from amblyopia, a neural condition where binocular vision does not develop correctly in childhood.
Collapse
|
8
|
Killebrew KW, Moser HR, Grant AN, Marjańska M, Sponheim SR, Schallmo MP. Faster bi-stable visual switching in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.13.23285774. [PMID: 36896020 PMCID: PMC9996680 DOI: 10.1101/2023.02.13.23285774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception is observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.
Collapse
Affiliation(s)
- Kyle W. Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Hannah R. Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Andrea N. Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Scott R. Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
- Veterans Affairs Medical Center, Minneapolis, MN
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| |
Collapse
|
9
|
Modulation of Visual Responses and Ocular Dominance by Contralateral Inhibitory Activation in the Mouse Visual Cortex. Int J Mol Sci 2023; 24:ijms24065750. [PMID: 36982823 PMCID: PMC10058019 DOI: 10.3390/ijms24065750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Both hemispheres connect with each other by excitatory callosal projections, and whether inhibitory interneurons, usually believed to have local innervation, engage in transcallosal activity modulation is unknown. Here, we used optogenetics in combination with cell-type-specific channelrhodopsin-2 expression to activate different inhibitory neuron subpopulations in the visual cortex and recorded the response of the entire visual cortex using intrinsic signal optical imaging. We found that optogenetic stimulation of inhibitory neurons reduced spontaneous activity (increase in the reflection of illumination) in the binocular area of the contralateral hemisphere, although these stimulations had different local effects ipsilaterally. The activation of contralateral interneurons differentially affected both eye responses to visual stimuli and, thus, changed ocular dominance. Optogenetic silencing of excitatory neurons affects the ipsilateral eye response and ocular dominance in the contralateral cortex to a lesser extent. Our results revealed a transcallosal effect of interneuron activation in the mouse visual cortex.
Collapse
|
10
|
Castillo-Astorga R, Del Valle-Batalla L, Mariman JJ, Plaza-Rosales I, de los Angeles Juricic M, Maldonado PE, Vogel M, Fuentes-Flores R. Combined therapy of bilateral transcranial direct current stimulation and ocular occlusion improves visual function in adults with amblyopia, a randomized pilot study. Front Hum Neurosci 2023; 17:1056432. [PMID: 36816499 PMCID: PMC9936073 DOI: 10.3389/fnhum.2023.1056432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background Amblyopia is the interocular visual acuity difference of two lines or more with the best correction in both eyes. It is treated with ocular occlusion therapy, but its success depends on neuroplasticity, and thus is effective in children but not adults. Transcranial Direct Current Stimulation (tDCS) is suggested to increase neuroplasticity. Objective To determine if combined intervention of bilateral tDCS and ocular occlusion improves visual function in adults with amblyopia. Methods A double-blind randomized, controlled pilot trial was conducted in 10 volunteers with amblyopia. While applying ocular occlusion and performing a reading task, participants received bilateral tDCS (n = 5) or sham stimulation (n = 5), with the anodal tDCS electrode in the contralateral visual cortex and the cathodal in the ipsilateral visual cortex in relation to the amblyopic eye. Visual function (through visual acuity, stereopsis, and contrast sensitivity tests) and visual evoked potential (with checkerboard pattern stimuli presentation) were evaluated immediately after. Results A total of 30 min after treatment with bilateral tDCS, visual acuity improved by 0.16 (± 0.025) LogMAR in the treatment group compared with no improvement (-0.02 ± 0.02) in five controls (p = 0.0079), along with a significant increase in the amplitude of visual evoked potentials of the amblyopic eye response (p = 0.0286). No significant changes were observed in stereopsis and contrast sensitivity. No volunteer reported any harm derived from the intervention. Conclusion Our study is the first to combine anodal and cathodal tDCS for the treatment of amblyopia, showing transient improved visual acuity in amblyopic adults.
Collapse
Affiliation(s)
| | | | - Juan José Mariman
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Departamento de Kinesiología, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile,Núcleo de Bienestar y Desarrollo Humano, Centro de Investigación en Educación (CIE-UMCE), Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Ivan Plaza-Rosales
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria de los Angeles Juricic
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile,Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pedro Esteban Maldonado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marlene Vogel
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Servicio de Oftalmología, Hospital Exequiel González, Santiago, Chile,Servicio de Oftalmología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Romulo Fuentes-Flores
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Biomedical Neuroscience Institute (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile,*Correspondence: Romulo Fuentes-Flores,
| |
Collapse
|
11
|
Glutamate, GABA and glutathione in adults with persistent post-concussive symptoms. Neuroimage Clin 2022; 36:103152. [PMID: 36007438 PMCID: PMC9424629 DOI: 10.1016/j.nicl.2022.103152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Persistent post-concussive symptoms (PPCS) are debilitating and endure beyond the usual recovery period after mild traumatic brain injury (mTBI). Altered neurotransmission, impaired energy metabolism and oxidative stress have been examined acutely post-injury but have not been explored extensively in those with persistent symptoms. Specifically, the antioxidant glutathione (GSH) and the excitatory and inhibitory metabolites, glutamate (Glu) and γ-aminobutyric acid (GABA), are seldom studied together in the clinical mTBI literature. While Glu can be measured using conventional magnetic resonance spectroscopy (MRS) methods at 3 Tesla, GABA and GSH require the use of advanced MRS methods. Here, we used the recently established Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) to simultaneously measure GSH and GABA and short-echo time point resolved spectroscopy (PRESS) to measure Glu to gain new insight into the pathophysiology of PPCS. Twenty-nine adults with PPCS (mean age: 45.69 years, s.d.: 10.73, 22 females, 7 males) and 29 age- and sex-matched controls (mean age: 43.69 years, s.d.: 11.00) completed magnetic resonance spectroscopy scans with voxels placed in the anterior cingulate and right sensorimotor cortex. Relative to controls, anterior cingulate Glu was significantly reduced in PPCS. Higher anterior cingulate GABA was significantly associated with a higher number of lifetime mTBIs, suggesting GABA may be upregulated with repeated incidence of mTBI. Furthermore, GSH in both regions of interest was positively associated with symptoms of sleepiness and headache burden. Collectively, our findings suggest that the antioxidant defense system is active in participants with PPCS, however this may be at the expense of other glutamatergic functions such as cortical excitation and energy metabolism.
Collapse
|
12
|
Choi MY, Choi JA. Ocular Dominance in Open Angle Glaucoma: the shifting trend depending on stage of the disease. KOREAN JOURNAL OF OPHTHALMOLOGY 2022; 36:236-243. [PMID: 35176838 PMCID: PMC9194727 DOI: 10.3341/kjo.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the characteristics and distribution of ocular dominance in primary open-angle glaucoma eyes. In addition, we tried to catch any trend of ocular dominance according to the stage of disease. Methods Two hundred participants with bilateral open-angle glaucoma underwent ocular dominant testing by “the hole-in-a-card” test. Using optical coherence tomography, macular ganglion cell-inner plexiform layer, as well as circumpapillary retinal nerve fiber layer thickness were measured and compared according to ocular dominance. Of the two eyes of one subject, the eye with less glaucomatous damage based on mean deviation was considered to be the “better eye” in our study. Results Ocular dominance was in the right eye in 66% of the population and ocular dominance was positioned in the better eye in 70% of the population (p = 0.001 and p = 0.002, respectively). In conditional logistic regression analyses, right eye and better mean deviation were significantly associated with ocular dominance (p = 0.001 and p = 0.002, respectively). Ocular dominance tends to be present in the better eye and this trend was more apparent as the severity of glaucoma increased. Intereye comparison of visual field indices and retinal nerve fiber layer thickness between dominant versus nondominant eye become apparent in moderate and advanced glaucoma whereas it was not as apparent in early glaucoma. Conclusions In glaucomatous eyes, laterality and severity of glaucoma determined ocular dominance. Intereye difference between nondominant and dominant eyes increased with the severity of glaucoma. Our findings suggest the existence of potential reciprocal interactions between ocular dominance and glaucoma.
Collapse
Affiliation(s)
- Moon Young Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Jin A Choi
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| |
Collapse
|