1
|
Yoodee S, Peerapen P, Boonmark W, Thongboonkerd V. The inhibitory effects of proteins secreted from trigonelline-treated renal cells on calcium oxalate crystals in vitro: Implications for kidney stone prevention. Biomed Pharmacother 2025; 186:118003. [PMID: 40132401 DOI: 10.1016/j.biopha.2025.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Trigonelline is a bioactive alkaloid with therapeutic effects on various kidney diseases. Although previous studies have implicated its potential to prevent kidney stone disease (KSD), its anti-lithiatic mechanisms were poorly understood and thus addressed herein. Secretome (a set of secreted proteins) was collected and purified from MDCK renal cells treated with 100 µM trigonelline (termed "trigonelline-treated secretome") to examine its effects on calcium oxalate (CaOx) crystals compared with that derived from untreated cells (termed "control secretome"). Trigonelline-treated secretome significantly reduced CaOx crystal size, number and abundance during initial crystallization, and also inhibited crystal growth, aggregation and adhesion to renal cells. Quantitative proteomics using nanoLC-ESI-Qq-TOF tandem mass spectrometry revealed 46 differentially secreted (11 decreased and 35 increased) proteins, mainly from extracellular compartments, in the trigonelline-treated secretome. While most of the identified proteins were acidic, significantly increased secreted proteins had an increased proportion of basic proteins, resulting in a slightly greater isoelectric point. In concordance, significantly increased secreted proteins had a greater proportion of positively charged amino acids as compared with significantly decreased secreted proteins. However, proportions of aromatic, polar, non-polar, and negatively charged amino acids were comparable. In summary, we report herein direct evidence of the inhibitory effects of trigonelline against CaOx crystallization, growth, aggregation and adhesion to renal cells via the altered secreted proteins that show some unique physicochemical properties when the increased secreted proteins were compared with the decreased compartments. These data may lead to a better understanding of mechanisms underlying the anti-lithiatic effects of trigonelline to prevent KSD.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
2
|
Yoodee S, Malaitad T, Plumworasawat S, Thongboonkerd V. The relevance of calcium-binding domains to promoting activities of annexin A2 in calcium oxalate stone formation. Int J Biol Macromol 2025; 310:143460. [PMID: 40280516 DOI: 10.1016/j.ijbiomac.2025.143460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Annexin A2 (ANXA2) is a Ca2+-binding protein involved in kidney stone disease (KSD) but with unclear mechanism. Herein, five Ca2+-binding domains of ANXA2 were mutated by substituting glutamic acid (E) at positions 53rd (domain I), 96th (domain II) and 247th (domain IV), and aspartic acid (D) at positions 162nd (domain III) and 322nd (domain V) with alanine (A). Recombinant ANXA2 wide type (WT) and mutants (E53A, E96A, D162A, E247A and D322A) were constructed, produced, purified and subjected to multiple crystal and functional assays. Crystal assays revealed that ANXA2 WT increased calcium oxalate monohydrate (COM) crystal size during crystallization and enhanced growth and crystal-cell adhesion phases compared with blank and negative controls. However, crystals exposed to all ANXA2 mutants had comparable or slightly lower parameters compared with controls. Although ANXA2 WT did not affect crystal aggregation, its mutants still showed a lower degree of crystal aggregation. Immunofluorescence staining and Ca2+-binding assay demonstrated that ANXA2 WT had the greatest affinity to COM crystals and free Ca2+ ions, whereas all the mutants showed lower affinity. Taken together, all five Ca2+-binding domains are relevant to the promoting activities of ANXA2 in COM stone formation by interacting with COM crystal surfaces and free Ca2+ ions.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
3
|
Shi M, Su X, Xiang H, Song Q, Yang S. Advances in the mechanism of urinary proteins in calcium oxalate kidney stone formation. Urolithiasis 2025; 53:27. [PMID: 39932538 DOI: 10.1007/s00240-025-01703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 04/30/2025]
Abstract
Kidney stones are a common urological disease worldwide, imposing a significant burden on healthcare systems. Calcium oxalate stones are the predominant form of urinary calculi, with two main theoretical models explaining their pathogenesis: the fixed particle and free particle models. Regardless of the model, the formation of calcium oxalate kidney stones is inseparably linked to crystal nucleation, growth, aggregation, and adhesion in urine. Growing evidence highlights the significant role of urinary proteins, particularly matrix proteins, in the development of calcium oxalate stones. The review classifies urinary proteins impacting calcium oxalate stone formation into three groups: inhibitors, promoters, and dual-regulators, outlining their contributions to the formation process.
Collapse
Affiliation(s)
- Mingcheng Shi
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Heng Xiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Qianlin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| |
Collapse
|
4
|
Popova E, Tkachev S, Shapoval A, Karpenko A, Lee Y, Chislov P, Ershov B, Golub D, Galechyan G, Bogoedov D, Akovantseva A, Gafarova E, Musaelyan R, Schekleina M, Clark S, Ali S, Dymov A, Vinarov A, Glybochko P, Timashev P. Kidney Stones as Minerals: How Methods from Geology Could Inform Urolithiasis Treatment. J Clin Med 2025; 14:997. [PMID: 39941670 PMCID: PMC11818645 DOI: 10.3390/jcm14030997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Despite the recent advances in minimally invasive surgery, kidney stones still pose a significant clinical challenge due to their high recurrence rate of 50% in 5-10 years after the first stone episode. Using the methods of geosciences and biology, the GeoBioMed approach treats kidney stones as biogenic minerals, offering a novel perspective on their formation and dissolution processes. In this review, we discuss kidney stones' structural and mechanical properties as emerging biomarkers of urolithiasis, emphasizing the importance of a comprehensive stone analysis in developing personalized treatment strategies. By focusing on unexplored properties like crystalline architecture, porosity, permeability, cleavage, and fracture, alongside the conventionally used composition and morphology, we show how these stone characteristics influence the treatment efficacy and the disease recurrence. This review also highlights the potential of advanced imaging techniques to uncover novel biomarkers, contributing to a deeper understanding of stone pathogenesis. We discuss how the interdisciplinary collaboration within the GeoBioMed approach aims to enhance the diagnostic accuracy, improve the treatment outcomes, and reduce the recurrence of urolithiasis.
Collapse
Affiliation(s)
- Elena Popova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Moscow 115682, Russia;
| | - Sergey Tkachev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Artur Shapoval
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anastasia Karpenko
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Yuliya Lee
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Pavel Chislov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Boris Ershov
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Danila Golub
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Gevorg Galechyan
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | | | - Anastasiya Akovantseva
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elvira Gafarova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | | | - Maria Schekleina
- Department of Petrology and Volcanology, Moscow State University, Moscow 119991, Russia
| | - Stuart Clark
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stanislav Ali
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Alim Dymov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Andrey Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Petr Glybochko
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
5
|
Liu J, Han G, Tian Y, Qu R, Wang D, Shen Y. Natural variation of magnesium stable isotopes in human kidney stones. Metallomics 2024; 16:mfae056. [PMID: 39562283 DOI: 10.1093/mtomcs/mfae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Kidney stones, as typical biominerals produced within the human body, pose a significant threat to human health, affecting over 12% of the global population. However, the exact mechanisms underlying their formation are not fully understood. Recent metal isotopic analysis provides a new way to study the roles of metal cations in biological processes within organisms. Here, we report the Mg isotope ratios of human kidney stones for the first time. The total range of measured values for δ26Mg in kidney stones is 1.05‰, from -1.12‰ to -0.07‰. Our data exhibit a significant 24Mg enrichment compared with the values calculated from density functional theory. We suggest that the Mg-isotopic fractionations in vivo are linked to active Mg transport mediated by proteins during intestinal absorption and preferential renal reabsorption of ionized Mg2+ via tight junctional proteins. Our results indicate that the inhibitory effect of Mg on kidney stones is related to the kink-blocking mechanism, and the incorporation of hydrated Mg lessens the extent of inhibition and the magnitude of isotope discrimination. We show that metal isotopes provide new insights into the underlying biological processes and human health.
Collapse
Affiliation(s)
- Jinke Liu
- State key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guilin Han
- State key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yu Tian
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Rui Qu
- State key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Di Wang
- State key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yanan Shen
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Liang Z, Hu C, Pang H, Sha Y, Yao L, Liu F. Identifying therapeutic targets for kidney stone disease through proteome-wide Mendelian randomization and colocalization analysis. Urolithiasis 2024; 52:167. [PMID: 39585470 DOI: 10.1007/s00240-024-01669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Kidney stone disease (KSD) is facing rising global prevalence and recurrence rates. Mendelian randomization aids in drug repurposing and the discovery of therapeutic targets. This study utilized Mendelian randomization (MR) to identify protein targets for KSD treatment and assess potential adverse drug reactions. A proteome-wide MR study assessed plasma proteins' causal relationship with KSD risk. Data from UK Biobank Proteomics Profiling Project (2940 proteins) and FinnGen R10 for KSD (10,556 cases, 400,681 controls) were analyzed. Colocalization analysis identified shared causal variants. Additionally, a Phenome-wide association study (PheWAS) used the FinnGen to explore adverse reactions of druggable proteins. MR study found ITIH4, F12, FKBPL positively correlated with KSD risk, while DAG1, ITIH1, LTB, CACYBP negatively correlated (Pfdr < 0.05). Colocalization analysis and PheWAS identified CACYBP as the most promising druggable protein for the prevention or treatment of nephrolithiasis recurrence. This study identified genetic protein biomarkers for KSD risk and explored potential drug side effects, offering new insights and targets for prevention and treatment.
Collapse
Affiliation(s)
- Zilong Liang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Graduate Department, Xi'an Medical University, Xi'an, 710021, China
| | - Conglei Hu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Haofeng Pang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Graduate Department, Xi'an Medical University, Xi'an, 710021, China
| | - Yi Sha
- Graduate Department, Xi'an Medical University, Xi'an, 710021, China
| | - Liping Yao
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China.
| | - Fei Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Huang Z, Wang G, Wu Y, Li J. Osteopontin promotes or inhibits kidney stone formation? Asian J Surg 2024:S1015-9584(24)02357-1. [PMID: 39516159 DOI: 10.1016/j.asjsur.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Ziye Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dian-Mian Avenue, Kunming, Yunnan, 650101, PR China.
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dian-Mian Avenue, Kunming, Yunnan, 650101, PR China.
| | - Yuyun Wu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dian-Mian Avenue, Kunming, Yunnan, 650101, PR China.
| | - Jiongming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dian-Mian Avenue, Kunming, Yunnan, 650101, PR China.
| |
Collapse
|
8
|
Ghoneim SH, Alghaythee H, Alasmari B, Safdar OY. Impact of diet on renal stone formation. J Family Med Prim Care 2024; 13:4800-4809. [PMID: 39722982 PMCID: PMC11668459 DOI: 10.4103/jfmpc.jfmpc_770_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 12/28/2024] Open
Abstract
Background and Objectives The incidence of kidney stones is increasing globally, with a preponderance in adults compared with that in adolescents and children. Dietary habits have been identified as significant contributing factors to kidney stone formation. This literature review aimed to explore the existing evidence on the impact of diet on renal stone formation. Methods and Study Design We conducted a comprehensive literature review and included 81 studies published between 1999 and 2023, limiting the search to articles published in English. The extracted data were analyzed to identify common themes, trends, and patterns related to the impact of diet on renal stone formation. We investigated the influence of dietary habits on the risk of nephrolithiasis. Results Although the role of fluid intake in relation to stone formation is clear, existing evidence on how different types of beverages (coffee, tea, fruit juices, and soft drinks) affect kidney stone formation is conflicting. Other factors such as protein, sodium chloride, calcium, oxalate, fat, and carbohydrate intake have also been discussed as contributors to nephrolithiasis. Thus, diet should be appropriately modified to reduce the risk of stone formation in susceptible individuals. A history of nephrolithiasis has been found to increase the risk of both chronic kidney disease and end-stage renal disease. The review acknowledges the limitations inherent in conducting a literature review, including the potential for publication bias and the reliance on available published studies. Conclusions These findings highlight the importance of understanding and preventing nephrolithiasis.
Collapse
Affiliation(s)
- Solafa H Ghoneim
- Department of Internal Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hotoon Alghaythee
- Department of Internal Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bashair Alasmari
- Department of Internal Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Y Safdar
- Pediatric Nephrology Centre of Excellence, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Yoodee S, Peerapen P, Thongboonkerd V. Defining physicochemical properties of urinary proteins that determine their inhibitory activities against calcium oxalate kidney stone formation. Int J Biol Macromol 2024; 279:135242. [PMID: 39218173 DOI: 10.1016/j.ijbiomac.2024.135242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
We have recently reported a set of urinary proteins that inhibited calcium oxalate (CaOx) stone development. However, physicochemical properties that determine their inhibitory activities remained unknown. Herein, human urinary proteins were chromatographically fractionated into 15 fractions and subjected to various CaOx crystal assays and identification by nanoLC-ESI-Qq-TOF MS/MS. Their physicochemical properties and crystal inhibitory activities were subjected to Pearson correlation analysis. The data showed that almost all urinary protein fractions had crystal inhibitory activities. Up to 128 proteins were identified from each fraction. Crystallization inhibitory activity correlated with percentages of Ca2+-binding proteins, stable proteins, polar amino acids, alpha helix, beta turn, and random coil, but inversely correlated with number of Ox2--binding motifs/protein and percentage of unstable proteins. Crystal aggregation inhibitory activity correlated with percentage of stable proteins but inversely correlated with percentage of unstable proteins. Crystal adhesion inhibitory activity correlated with percentage of stable proteins and GRAVY, but inversely correlated with pI, instability index and percentages of unstable proteins and positively charged amino acids. However, there was no correlation between crystal growth inhibitory activity and any physicochemical properties. In summary, some physicochemical properties of urinary proteins can determine and may be able to predict their CaOx stone inhibitory activities.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
10
|
Yoodee S, Peerapen P, Rattananinsruang P, Detsangiamsak S, Sukphan S, Thongboonkerd V. Large-scale identification of calcium oxalate stone inhibitory proteins in normal human urine. Int J Biol Macromol 2024; 275:133646. [PMID: 38969041 DOI: 10.1016/j.ijbiomac.2024.133646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Recent evidence has shown that proteins in normal human urine can inhibit calcium oxalate (CaOx) kidney stone formation. Herein, we performed fast protein liquid chromatography (FPLC) to fractionate normal human urinary proteins using anion-exchange (DEAE) and size-exclusion (Superdex 200) materials. FPLC fractions (F1-F15) were examined by CaOx crystallization, growth, aggregation and crystal-cell adhesion assays. The fractions with potent inhibitory activities against CaOx crystals were then subjected to mass spectrometric protein identification. The data revealed that 13 of 15 fractions showed inhibitory activities in at least one crystal assay. Integrating CaOx inhibitory scores demonstrated that F6, F7 and F8 had the most potent inhibitory activities. NanoLC-ESI-Qq-TOF MS/MS identified 105, 93 and 53 proteins in F6, F7 and F8, respectively. Among them, 60 were found in at least two fractions and/or listed among known inhibitors with solid experimental evidence in the StoneMod database (https://www.stonemod.org). Interestingly, 10 of these 60 potential inhibitors have been reported with lower urinary levels in CaOx stone formers compared with healthy (non-stone) individuals, strengthening their roles as potent CaOx stone inhibitors. Our study provides the largest dataset of potential CaOx stone inhibitory proteins that will be useful for further elucidations of stone-forming mechanisms and ultimately for therapeutic/preventive applications.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyaporn Rattananinsruang
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sasinun Detsangiamsak
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
11
|
Torii H, Miura H. Oscillatory zoning of minerals as a fingerprint of impurity-mediated growth. Sci Rep 2024; 14:13337. [PMID: 38902333 PMCID: PMC11190243 DOI: 10.1038/s41598-024-63722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
We propose a kinetic mathematical model of the oscillatory compositional zoning profile recorded in minerals based on the crystal growth suppression induced by impurities. Notably, the presence of a small amount of impurities significantly inhibits crystal growth, and a growth inhibition mechanism called the pinning effect is widely accepted. Here we show that a model that considers the pinning effect and adsorption/desorption kinetics of impurities on the crystal surface can reproduce the oscillatory compositional zoning. As impurities are common in nature, this model suggests the existence of a universal mechanism that can occur in the growth processes of various crystals.
Collapse
Affiliation(s)
- Hiroki Torii
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 4678501, Japan
| | - Hitoshi Miura
- Graduate School of Science, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 4678501, Japan.
| |
Collapse
|
12
|
Michibata U, Maruyama M, Tanaka Y, Yoshimura M, Yoshikawa HY, Takano K, Furukawa Y, Momma K, Tajiri R, Taguchi K, Hamamoto S, Okada A, Kohri K, Yasui T, Usami S, Imanishi M, Mori Y. The impact of crystal phase transition on the hardness and structure of kidney stones. Urolithiasis 2024; 52:57. [PMID: 38563829 PMCID: PMC10987347 DOI: 10.1007/s00240-024-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Calcium oxalate kidney stones, the most prevalent type of kidney stones, undergo a multi-step process of crystal nucleation, growth, aggregation, and secondary transition. The secondary transition has been rather overlooked, and thus, the effects on the disease and the underlying mechanism remain unclear. Here, we show, by periodic micro-CT images of human kidney stones in an ex vivo incubation experiment, that the growth of porous aggregates of calcium oxalate dihydrate (COD) crystals triggers the hardening of the kidney stones that causes difficulty in lithotripsy of kidney stone disease in the secondary transition. This hardening was caused by the internal nucleation and growth of precise calcium oxalate monohydrate (COM) crystals from isolated urine in which the calcium oxalate concentrations decreased by the growth of COD in closed grain boundaries of COD aggregate kidney stones. Reducing the calcium oxalate concentrations in urine is regarded as a typical approach for avoiding the recurrence. However, our results revealed that the decrease of the concentrations in closed microenvironments conversely promotes the transition of the COD aggregates into hard COM aggregates. We anticipate that the suppression of the secondary transition has the potential to manage the deterioration of kidney stone disease.
Collapse
Affiliation(s)
- Uta Michibata
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan
| | - Mihoko Maruyama
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan.
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan.
| | - Yutaro Tanaka
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho- cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Masashi Yoshimura
- Institute of Laser Engineering, Osaka University, 2-6, Yamadaoka, Suita City, 565-0871, Osaka, Japan
| | - Hiroshi Y Yoshikawa
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan
| | - Kazufumi Takano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Koichi Momma
- National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan
| | - Rie Tajiri
- Tajiri Thin Section Laboratory, 3-1-11 Sannose, Higashiosaka, 577-0849, Osaka, Japan
| | - Kazumi Taguchi
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho- cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho- cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho- cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Kenjiro Kohri
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho- cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho- cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Shigeyoshi Usami
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan
| | - Masayuki Imanishi
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan
| | - Yusuke Mori
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
13
|
Yoodee S, Thongboonkerd V. Bioinformatics and computational analyses of kidney stone modulatory proteins lead to solid experimental evidence and therapeutic potential. Biomed Pharmacother 2023; 159:114217. [PMID: 36623450 DOI: 10.1016/j.biopha.2023.114217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
In recent biomedical research, bioinformatics and computational analyses have played essential roles for examining experimental findings and database information. Several bioinformatic tools have been developed and made publicly available for analyzing protein sequence, structure, functional motif/domain, and interactions network. Such properties are very helpful to define biochemical and functional roles of the protein(s) of interest. During the past few decades, bioinformatics and computational biotechnology have been widely applied to kidney stone research. This review summarizes commonly used tools and evidence of bioinformatics and computational biotechnology applied to kidney stone disease (KSD) with special emphasis on analyses of the stone modulatory proteins that play critical roles in kidney stone formation. Such analyses lead to solid experimental evidence to demonstrate mechanisms underlying their stone modulatory activities. The findings obtained from such analyses may also lead to better understanding of KSD pathogenesis and to further development of new therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
14
|
Quantitative analysis of calcium oxalate monohydrate and dihydrate for elucidating the formation mechanism of calcium oxalate kidney stones. PLoS One 2023; 18:e0282743. [PMID: 36893192 PMCID: PMC9997882 DOI: 10.1371/journal.pone.0282743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
We sought to identify and quantitatively analyze calcium oxalate (CaOx) kidney stones on the order of micrometers, with a focus on the quantitative identification of calcium oxalate monohydrate (COM) and dihydrate (COD). We performed Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), and microfocus X-ray computed tomography measurements (microfocus X-ray CT) and compared their results. An extended analysis of the FTIR spectrum focusing on the 780 cm-1 peak made it possible to achieve a reliable analysis of the COM/COD ratio. We succeeded in the quantitative analysis of COM/COD in 50-μm2 areas by applying microscopic FTIR for thin sections of kidney stones, and by applying microfocus X-ray CT system for bulk samples. The analysis results based on the PXRD measurements with micro-sampling, the microscopic FTIR analysis of thin sections, and the microfocus X-ray CT system observation of a bulk kidney stone sample showed roughly consistent results, indicating that all three methods can be used complementarily. This quantitative analysis method evaluates the detailed CaOx composition on the preserved stone surface and provides information on the stone formation processes. This information clarifies where and which crystal phase nucleates, how the crystals grow, and how the transition from the metastable phase to the stable phase proceeds. The phase transition affects the growth rate and hardness of kidney stones and thus provides crucial clues to the kidney stone formation process.
Collapse
|
15
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. Roles of heat-shock protein 90 and its four domains (N, LR, M and C) in calcium oxalate stone-forming processes. Cell Mol Life Sci 2022; 79:454. [PMID: 35900595 PMCID: PMC9330963 DOI: 10.1007/s00018-022-04483-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Human heat-shock protein 90 (HSP90) has four functional domains, including NH2-terminal (N), charged linker region (LR), middle (M) and COOH-terminal (C) domains. In kidney stone disease (or nephrolithiasis/urolithiasis), HSP90 serves as a receptor for calcium oxalate monohydrate (COM), which is the most common crystal to form kidney stones. Nevertheless, roles of HSP90 and its four domains in kidney stone formation remained unclear and under-investigated. We thus examined and compared their effects on COM crystals during physical (crystallization, growth and aggregation) and biological (crystal–cell adhesion and crystal invasion through extracellular matrix (ECM)) pathogenic processes of kidney stone formation. The analyses revealed that full-length (FL) HSP90 obviously increased COM crystal size and abundance during crystallization and markedly promoted crystal growth, aggregation, adhesion onto renal cells and ECM invasion. Comparing among four individual domains, N and C domains exhibited the strongest promoting effects, whereas LR domain had the weakest promoting effects on COM crystals. In summary, our findings indicate that FL-HSP90 and its four domains (N, LR, M and C) promote COM crystallization, crystal growth, aggregation, adhesion onto renal cells and invasion through the ECM, all of which are the important physical and biological pathogenic processes of kidney stone formation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|