1
|
Chien C, Heine J, Khalil A, Schlenker L, Hartung TJ, Boesl F, Schwichtenberg K, Rust R, Bellmann‐Strobl J, Franke C, Paul F, Finke C. Altered brain perfusion and oxygen levels relate to sleepiness and attention in post-COVID syndrome. Ann Clin Transl Neurol 2024; 11:2016-2029. [PMID: 38874398 PMCID: PMC11330224 DOI: 10.1002/acn3.52121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Persisting neurological symptoms after COVID-19 affect up to 10% of patients and can manifest in fatigue and cognitive complaints. Based on recent evidence, we evaluated whether cerebral hemodynamic changes contribute to post-COVID syndrome (PCS). METHODS Using resting-state functional magnetic resonance imaging, we investigated brain perfusion and oxygen level estimates in 47 patients (44.4 ± 11.6 years; F:M = 38:9) and 47 individually matched healthy control participants. Group differences were calculated using two-sample t-tests. Multivariable linear regression was used for associations of each regional perfusion and oxygen level measure with cognition and sleepiness measures. Exploratory hazard ratios were calculated for each brain metric with clinical measures. RESULTS Patients presented with high levels of fatigue (79%) and daytime sleepiness (45%). We found widespread decreased brain oxygen levels, most evident in the white matter (false discovery rate adjusted-p-value (p-FDR) = 0.038) and cortical grey matter (p-FDR = 0.015). Brain perfusion did not differ between patients and healthy participants. However, delayed patient caudate nucleus perfusion was associated with better executive function (p-FDR = 0.008). Delayed perfusion in the cortical grey matter and hippocampus were associated with a reduced risk of daytime sleepiness (hazard ratio (HR) = 0.07, p = 0.037 and HR = 0.06, p = 0.034). Decreased putamen oxygen levels were associated with a reduced risk of poor cognitive outcome (HR = 0.22, p = 0.019). Meanwhile, lower thalamic oxygen levels were associated with a higher risk of cognitive fatigue (HR = 6.29, p = 0.017). INTERPRETATION Our findings of lower regional brain blood oxygen levels suggest increased cerebral metabolism in PCS, which potentially holds a compensatory function. These hemodynamic changes were related to symptom severity, possibly representing metabolic adaptations.
Collapse
Affiliation(s)
- Claudia Chien
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | - Josephine Heine
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Department of Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Ahmed Khalil
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Lars Schlenker
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Tim J. Hartung
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Fabian Boesl
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Katia Schwichtenberg
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Rebekka Rust
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin Institut für Med. Immunologie, ImmundefektambulanzBerlinGermany
| | - Judith Bellmann‐Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Christiana Franke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinExperimental and Clinical Research CenterBerlinGermany
- Neuroscience Clinical Research CenterCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Fettahoglu A, Zhao M, Khalighi M, Vossler H, Jovin M, Davidzon G, Zeineh M, Boada F, Mormino E, Henderson VW, Moseley M, Chen KT, Zaharchuk G. Early-Frame [ 18F]Florbetaben PET/MRI for Cerebral Blood Flow Quantification in Patients with Cognitive Impairment: Comparison to an [ 15O]Water Gold Standard. J Nucl Med 2024; 65:306-312. [PMID: 38071587 PMCID: PMC10858379 DOI: 10.2967/jnumed.123.266273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/24/2023] [Indexed: 02/03/2024] Open
Abstract
Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 β-amyloid negative and 10 β-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.
Collapse
Affiliation(s)
- Ates Fettahoglu
- Department of Radiology, Stanford University, Stanford, California
- Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mehdi Khalighi
- Department of Radiology, Stanford University, Stanford, California
| | - Hillary Vossler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Maria Jovin
- Department of Radiology, Stanford University, Stanford, California
| | - Guido Davidzon
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California
| | - Fernando Boada
- Department of Radiology, Stanford University, Stanford, California
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California; and
| | - Michael Moseley
- Department of Radiology, Stanford University, Stanford, California
| | - Kevin T Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
3
|
Yoo SW, Ha S, Oh YS, Ryu DW, Yoo JY, Lee KS, Kim JS. Caudate-anchored cognitive connectivity pursuant to orthostatic hypotension in early Parkinson's disease. Sci Rep 2022; 12:22161. [PMID: 36550284 PMCID: PMC9780335 DOI: 10.1038/s41598-022-26811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
18F-Florbetaben is a tracer used to evaluate the metabolic activity of and amyloid accumulation in the brain when measured in early- and late-phase, respectively. The metabolism of neural substrates could be viewed as a network and might be an important factor in cognition. Orthostatic hypotension (OH) might play an indirect moderating role in cognition, and its latent influence could modify the inherent cognitive network. This study aimed to identify changes of cognitive connectivity according to orthostatic stress in patients with early Parkinson's disease (PD). This study included 104 early PD patients who were evaluated with a head-up tilt-test and18F-Florbetaben positron emission tomography (PET). Cognition was assessed with a comprehensive neuropsychological battery that gauged attention/working memory, language, visuospatial, memory, and executive functions. PET images were analyzed visually for amyloid deposits, and early-phase images were normalized to obtain standardized uptake ratios (SUVRs) of pre-specified subregions relevant to specific cognitive domains. The caudate nucleus was referenced and paired to these pre-specified regions. The correlations between SUVRs of these regions were assessed and stratified according to presence of orthostatic hypotension. Among the patients studied, 22 (21.2%) participants had orthostatic hypotension. Nineteen patients (18.3%) were positive for amyloid-β accumulation upon visual analysis. Moderate correlations between the caudate and pre-specified subregions were observed (Spearman's rho, range [0.331-0.545]). Cognition did not differ, but the patterns of correlation were altered when the disease was stratified by presence of orthostatic stress. In conclusion, cognition in early PD responds to hemodynamic stress by adapting its neural connections between regions relevant to cognitive functions.
Collapse
Affiliation(s)
- Sang-Won Yoo
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seunggyun Ha
- grid.411947.e0000 0004 0470 4224Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon-Sang Oh
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Ryu
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Yeon Yoo
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwang-Soo Lee
- grid.411947.e0000 0004 0470 4224Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong-Seok Kim
- grid.414966.80000 0004 0647 5752Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
4
|
Kang K, Jeong SY, Park K, Hahm MH, Kim J, Lee H, Kim C, Yun E, Han J, Yoon U, Lee S. Distinct cerebral cortical perfusion patterns in idiopathic normal-pressure hydrocephalus. Hum Brain Mapp 2022; 44:269-279. [PMID: 36102811 PMCID: PMC9783416 DOI: 10.1002/hbm.25974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aims of the study are to evaluate idiopathic normal-pressure hydrocephalus (INPH)-related cerebral blood flow (CBF) abnormalities and to investigate their relation to cortical thickness in INPH patients. We investigated cortical CBF utilizing surface-based early-phase 18 F-florbetaben (E-FBB) PET analysis in two groups: INPH patients and healthy controls. All 39 INPH patients and 20 healthy controls were imaged with MRI, including three-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain. A subgroup with 37 participants (22 INPH patients and 15 healthy controls) that also underwent 18 F-fluorodeoxyglucose (FDG) PET imaging was further analyzed. Compared with age- and gender-matched healthy controls, INPH patients showed statistically significant hyperperfusion in the high convexity of the frontal and parietal cortical regions. Importantly, within the INPH group, increased perfusion correlated with cortical thickening in these regions. Additionally, significant hypoperfusion mainly in the ventrolateral frontal cortex, supramarginal gyrus, and temporal cortical regions was observed in the INPH group relative to the control group. However, this hypoperfusion was not associated with cortical thinning. A subgroup analysis of participants that also underwent FDG PET imaging showed that increased (or decreased) cerebral perfusion was associated with increased (or decreased) glucose metabolism in INPH. A distinctive regional relationship between cerebral cortical perfusion and cortical thickness was shown in INPH patients. Our findings suggest distinct pathophysiologic mechanisms of hyperperfusion and hypoperfusion in INPH patients.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Ki‐Su Park
- Department of Neurosurgery, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Myong Hun Hahm
- Department of Radiology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jaeil Kim
- School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Ho‐Won Lee
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea,Brain Science and Engineering InstituteKyungpook National UniversityDaeguSouth Korea
| | - Chi‐Hun Kim
- Department of NeurologyHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Eunkyeong Yun
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Jaehwan Han
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Uicheul Yoon
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Sang‐Woo Lee
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|