1
|
Chu X, Zhu X, Xu H, Zhao W, Guo D, Chen X, Wu J, Li L, Wang H, Fei J. Deciphering the role of miRNA-mRNA interactions in cerebral vasospasm post intracranial hemorrhage. Front Mol Biosci 2025; 12:1492729. [PMID: 39981435 PMCID: PMC11840915 DOI: 10.3389/fmolb.2025.1492729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cerebral vasospasm (CVS), a serious complication following subarachnoid hemorrhage, is associated with high rates of mortality and disability. Emerging evidence suggests that abnormal miRNA and mRNA are involved in the development of CVS. This study aims to identify essential miRNA-mRNA regulatory pairs that contribute to CVS pathogenesis. We compared the differences between spasm and non-spasm groups after cerebral hemorrhage, identifying 183 differentially expressed genes (DEGs) and 19 differentially expressed miRNAs (DEMs) related to cerebral vasospasm from the GEO database. Further functional enrichment and KEGG analysis revealed that these DEGs were enriched in several terms and pathways, including the PI3K/AKT/mTOR signaling pathway, oxidative phosphorylation pathway, RNA degradation, and folate biosynthesis signaling pathway. By employing the degree scores method for each gene, we identified the top 10 genes and developed a protein-protein interaction (PPI) network. Additionally, we discovered 19 DEMs associated with CVS and integrated them with mRNA dataset analysis to construct a miRNA-mRNA network, which comprised 8 functionally differentially expressed DEMs and 6 target mRNAs. Experimental validation confirmed the significant regulatory roles of four miRNAs (Let-7a-5p, miR-24-3p, miR-29-3p, and miR-132-3p) and two mRNAs (CDK6 and SLC2A1) in the pathogenesis of CVS. In conclusion, this comprehensive study identifies pivotal miRNAs and their target mRNAs associated with CVS through an integrated bioinformatics analysis of miRNA-mRNA co-expression networks. This approach elucidates the intricate molecular mechanisms underlying CVS and uncovers potential therapeutic targets, thereby providing a valuable foundation for refining and optimizing future treatment strategies.
Collapse
Affiliation(s)
- Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children’s Hospital, Chongqing Medical University, Chongqing, China
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Honghao Xu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Debin Guo
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinze Wu
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Fei
- Emergency Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Keiller AC, Axelsson M, Bragadottir G, Lannemyr L, Wijk J, Blennow K, Zetterberg H, Bagge RO. Standard versus High Cardiopulmonary Bypass Flow Rate: A Randomized Controlled Subtrial Comparing Brain Injury Biomarker Release. J Cardiothorac Vasc Anesth 2024; 38:2204-2212. [PMID: 39069384 DOI: 10.1053/j.jvca.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To compare brain injury biomarker release levels between two different cardiopulmonary bypass (CPB) flow rates in elective cardiac surgery and to explore differences in postoperative delirium between groups and associations between age, sex, CPB time, oxygen levels, and near-infrared spectroscopy, and biomarker levels. DESIGN A randomized controlled substudy trial SETTING: Sahlgrenska University Hospital, Sweden PARTICIPANTS: Forty patients undergoing elective cardiac surgery with CPB INTERVENTION: Patients were assigned at random to either a standard (2.4 L/min/m2) or a high (2.9 L/min/m2) CPB flow rate. MEASUREMENTS AND MAIN RESULTS Glial fibrillary acidic protein, neurofilament light chain, total-tau, and phosphorylated-tau217 were sampled in plasma before anesthesia induction, after 60 minutes on CPB, and at 30 minutes, 24 hours, and 72 hours post-CPB. Mixed models for repeated measures were used to analyze differences in biomarker levels between groups and to assess relationships, which showed no differences between the 2 flow rate groups. There also was no difference in the occurrence of delirium between the 2 groups. Associations were found between age and increased neurofilament light chain levels. Female sex, oxygen delivery >330 mL/min/m2, and near-infrared spectroscopy level >60% were associated with lower biomarker levels. CONCLUSIONS An increased flow rate did not have any significant effects on biomarker levels compared to a standard flow rate. Several associations were identified between treatment characteristics and biomarker levels. No difference in delirium was seen.
Collapse
Affiliation(s)
- Anna Corderfeldt Keiller
- Department of Perfusion, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gudrun Bragadottir
- Department of Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lukas Lannemyr
- Department of Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Johanna Wijk
- Department of Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Roger Olofsson Bagge
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Bellettieri MPG, Anderloni M, Rass V, Kindl P, Donadello K, Taccone FS, Helbok R, Gouvea Bogossian E. Cerebrospinal fluid analysis of metabolites is not correlated to microdialysis measurements in acute brain injured patients. Clin Neurol Neurosurg 2023; 234:108011. [PMID: 37862729 DOI: 10.1016/j.clineuro.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Cerebral microdialysis (CMD) has become an established bedside monitoring modality but its implementation remains complex and costly and is therefore performed only in a few well-trained academic centers. This study investigated the relationship between cerebrospinal fluid (CSF) and CMD glucose and lactate concentrations. METHODS Two centers retrospective study of prospectively collected data. Consecutive adult (>18 years) acutely brain injured patients admitted to the Intensive Care Unit between 2010 and 2021 were eligible if CSF and CMD glucose and lactate concentrations were concomitantly measured at least once. RESULTS Of 113 patients being monitored with an external ventricular drainage and CMD, 49 patients (25 from Innsbruck and 24 from Brussels) were eligible for the final analysis, including a total of 96 measurements. Median CMD glucose and lactate concentrations were 1.15 (0.51-1.57) mmol/L and 3.44 (2.24-5.37) mmol/L, respectively; median CSF glucose and lactate concentrations were 4.67 (4.03-5.34) mmol/L and 3.40 (2.85-4.10) mmol/L, respectively. For the first measurements, no correlation between CSF and CMD glucose concentrations (R2 <0.01; p = 0.95) and CSF and CMD lactate concentrations (R2 =0.16; p = 0.09) was found. Considering all measurements, the repeated measure correlation analysis also showed no correlation for glucose (rrm = -0.01; 95% Confidence Intervals -0.306 to 0.281; p = 0.93) and lactate (rrm = -0.11; 95% Confidence Intervals -0.424 to 0.236; p = 0.55). CONCLUSIONS In this study including acute brain injured patients, no correlation between CSF and brain tissue measurements of glucose and lactate was observed. As such, CSF measurements of such metabolites cannot replace CMD findings.
Collapse
Affiliation(s)
| | - Marco Anderloni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium; Department of Anesthesia and Intensive Care B, Department of Surgery, Dentistry, Ginaecology and Paediatrics, University of Verona, University Hospital Integrated Trust of Verona, Verona, Italy
| | - Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Kindl
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katia Donadello
- Department of Anesthesia and Intensive Care B, Department of Surgery, Dentistry, Ginaecology and Paediatrics, University of Verona, University Hospital Integrated Trust of Verona, Verona, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
4
|
Bucki R, Iwamoto DV, Shi X, Kerr KE, Byfield FJ, Suprewicz Ł, Skłodowski K, Sutaria J, Misiak P, Wilczewska AZ, Ramachandran S, Wolfe A, Thanh MTH, Whalen E, Patteson AE, Janmey PA. Extracellular vimentin is sufficient to promote cell attachment, spreading, and motility by a mechanism involving N-acetyl glucosamine-containing structures. J Biol Chem 2023; 299:104963. [PMID: 37356720 PMCID: PMC10392088 DOI: 10.1016/j.jbc.2023.104963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.
Collapse
Affiliation(s)
- Robert Bucki
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland.
| | - Daniel V Iwamoto
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuechen Shi
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine E Kerr
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fitzroy J Byfield
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Julian Sutaria
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paweł Misiak
- Faculty of Chemistry, University of Białystok, Białystok, Poland
| | | | | | - Aaron Wolfe
- Ichor Life Sciences, Inc, LaFayette, New York, USA; Lewis School of Health Sciences, Clarkson University, Potsdam, New York, USA
| | - Minh-Tri Ho Thanh
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Eli Whalen
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA
| | - Alison E Patteson
- Physics Department, BioInspired Institute, Syracuse University, Syracuse, New York, USA.
| | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Han JR, Yang Y, Wu TW, Shi TT, Li W, Zou Y. A Minimally-Invasive Method for Serial Cerebrospinal Fluid Collection and Injection in Rodents with High Survival Rates. Biomedicines 2023; 11:1609. [PMID: 37371704 DOI: 10.3390/biomedicines11061609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Cerebrospinal fluid (CSF) is an important sample source for diagnosing diseases in the central nervous system (CNS), but collecting and injecting CSF in small animals is technically challenging and often results in high mortality rates. Here, we present a cost-effective and efficient method for accessing the CSF in live rodents for fluid collection and infusion purposes. The key element of this protocol is a metal needle tool bent at a unique angle and length, allowing the successful access of the CSF through the foramen magnum. With this method, we can collect 5-10 µL of the CSF from mice and 70-100 µL from rats for downstream analyses, including mass spectrometry. Moreover, our minimally-invasive procedure enables iterative CSF collection from the same animal every few days, representing a significant improvement over prior protocols. Additionally, our method can be used to inject solutions into mice cisterna magna with high success rates and high postoperative recovery rates. In summary, we provide an efficient and minimally-invasive protocol for collecting and infusing reagents into the CSF in live rodents. We envision this protocol will facilitate biomarker discovery and drug development for diseases in the central nervous system.
Collapse
Affiliation(s)
- Jingrong Regina Han
- School of Life Sciences, Fudan University, Shanghai 200438, China
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Institute for Advanced Study, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Yu Yang
- Laboratory Animal Resources Center, Westlake University, Hangzhou 310024, China
| | - Tianshu William Wu
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Institute for Advanced Study, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Tao-Tao Shi
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Yilong Zou
- Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Institute for Advanced Study, Hangzhou 310024, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| |
Collapse
|