1
|
Readhead C, Mahler S, Dong Z, Sato Y, Yang C, Bronner ME. Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to Nifedipine and Amlodipine drugs. Dev Biol 2025; 519:46-54. [PMID: 39675502 PMCID: PMC11750601 DOI: 10.1016/j.ydbio.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow noninvasively, we test the utility of the developing chick heart as a functional model for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick's heart rate, blood flow, and vascular size within 5-20 min after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 h. Nifedipine showed a rapid reduction in heart rate and blood flow dynamics at a concentration ten times lower than Amlodipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost-effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart.
Collapse
Affiliation(s)
- Carol Readhead
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Zhenyu Dong
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yuki Sato
- Department of Anatomy and Cell Biology, Kyushu University, Fukuoka, Japan
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
2
|
Chizari A, Schaap MJ, Knop T, Seyger MMB, Steenbergen W. Mitigation of Motion Artifacts in Handheld Laser Speckle Contrast Imaging Illustrated on Psoriasis Lesions. IEEE Trans Biomed Eng 2025; 72:70-78. [PMID: 39102317 DOI: 10.1109/tbme.2024.3438375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND Handheld laser speckle contrast imaging (LSCI) is crucial in clinical settings, but motion artifacts (MA) can compromise perfusion image reliability. Current prevention and suppression methods are often impractical or complex. Machine vision techniques, promising in medical imaging, could improve signal quality, but their use in suppressing MA is still unexplored. OBJECTIVE We propose an innovative method based on linear regression for MA correction (MAC) in LSCI and validate it in vivo. METHODS We performed paired handheld and mounted LSCI measurements on 14 subjects with psoriasis using the previously validated handheld perfusion imager (HAPI). By marking lesion boundaries for clinical purposes, the HAPI used a monochromatic camera for both speckle imaging and motion detection, simplifying hardware requirements. Accurate estimation of relative displacements between the test object and LSCI probe allowed us to apply MAC to the perfusion images. RESULTS Local perfusion values correlated with applied speed were used to calculate and correct MA. The difference between mean perfusion in handheld and mounted modes after MAC significantly decreased (median error 14.2 perfusion units (p.u.) on lesions before correction (p 0.0005) and 0.5 p.u. after correction (p=0.2)). CONCLUSION The findings provide evidence for robust handheld LSCI and validate the MA technique in psoriasis case. Of the two causes of MA-on-surface speeds and wavefront tilt-we address the former and correct mean perfusion, assuming constant temporal perfusion at each location. SIGNIFICANCE We describe a practical, non-contact, marker-free technique for reliable handheld perfusion imaging, supporting further clinical translation in plastic surgery and burns.
Collapse
|
3
|
Zhu X, Shi L, Li P, Lu J. Cerebral blood flow patterns induced by photoactivation based on laser speckle contrast imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:6739-6755. [PMID: 39679412 PMCID: PMC11640580 DOI: 10.1364/boe.541444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Neurovascular coupling (NVC) is crucial for maintaining brain function and holds significant implications for diagnosing neurological disorders. However, the neuron type and spatial specificity in NVC remain poorly understood. In this study, we investigated the spatiotemporal characteristics of local cerebral blood flow (CBF) driven by excitatory (VGLUT2) and inhibitory (VGAT) neurons in the mouse sensorimotor cortex. By integrating optogenetics, wavefront modulation technology, and laser speckle contrast imaging (LSCI), we achieved precise, spatially targeted photoactivation of type-specific neurons and real-time CBF monitoring. We observed three distinct CBF response patterns across different locations: unimodal, bimodal, and biphasic. While unimodal and bimodal patterns were observed in different locations for both neuron types, the biphasic pattern was exclusive to inhibitory neurons. Our results reveal the spatiotemporal complexity of NVC across different neuron types and demonstrate our method's ability to analyze this complexity in detail.
Collapse
Affiliation(s)
- Xuan Zhu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Shi
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215100, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Readhead C, Mahler S, Dong Z, Sato Y, Yang C, Bronner ME. Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to nifedipine and amlodipine drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609812. [PMID: 39253508 PMCID: PMC11383000 DOI: 10.1101/2024.08.26.609812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow, here we test the utility of the chick embryo for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick heart rate, blood flow, and vascular size within 5-20 minutes after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 hours. In contrast, Amlodipine showed a rapid reduction in heart rate and blood flow dynamics at a more than ten times higher concentration than Nifedipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart. Highlights Non-invasive Laser Speckle Contrast Imaging (LSCI) of the chick chorioallantoic membrane (CAM) in whole incubated eggsSimultaneous recording images of the CAM, dynamics of blood flow, and heart rateLive view mode to identify size, heart position, and location of the embryo in the eggAutomated system for data acquisition and analysisLongitudinal quantification of the impact of a calcium channel antagonists, nifedipidine and amlodipine on the embryonic heart rate, CAM's blood flow, size and number of vessels.
Collapse
|
5
|
Dong Z, Mahler S, Readhead C, Chen X, Dickson M, Bronner M, Yang C. Non-invasive laser speckle contrast imaging (LSCI) of extra-embryonic blood vessels in intact avian eggs at early developmental stages. BIOMEDICAL OPTICS EXPRESS 2024; 15:4605-4624. [PMID: 39346990 PMCID: PMC11427191 DOI: 10.1364/boe.530366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
Imaging blood vessels in early-stage avian embryos has a wide range of practical applications for developmental biology studies, drug and vaccine testing, and early sex determination. Optical imaging, such as brightfield transmission imaging, offers a compelling solution due to its safe non-ionizing radiation, and operational benefits. However, it comes with challenges, such as eggshell opacity and light scattering. To address these, we have revisited an approach based on laser speckle contrast imaging (LSCI) and demonstrated a high-quality, comprehensive, and non-invasive visualization of blood vessels in few-days-old chicken eggs, with blood vessels as small as 100 µm in diameter (with LSCI profile full-width-at-half-maximum of 275 µm). We present its non-invasive use for monitoring blood flow, measuring the embryo's heartbeat, and determining the embryo's developmental stages using machine learning with 85% accuracy from stage HH15 to HH22. This method can potentially be used for non-invasive longitudinal studies of cardiovascular development and angiogenesis, as well as egg screening for the poultry industry.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Carol Readhead
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Maya Dickson
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
6
|
Valagiannopoulos C, Tosi D. Scattering integral equation formulation for intravascular inclusion biosensing. Sci Rep 2024; 14:14978. [PMID: 38951563 PMCID: PMC11217448 DOI: 10.1038/s41598-024-64633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
A dielectric waveguide, inserted into blood vessels, supports its basic mode that is being scattered by a near-field intravascular inclusion. A rigorous integral equation formulation is performed and the electromagnetic response from that inhomogeneity is semi-analytically evaluated. The detectability of the formation, based on spatial distribution of the recorded signal, is estimated by considering various inclusion sizes, locations and textural contrasts. The proposed technique, with its variants and generalizations, provides a generic versatile toolbox to efficiently model biosensor layouts involved in healthcare monitoring and disease screening.
Collapse
Affiliation(s)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
7
|
Padmanaban P, van Galen D, Salehi-Nik N, Zakharova M, Segerink L, Rouwkema J. Switching to external flows: perturbations of developing vasculature within chicken chorioallantoic membrane. LAB ON A CHIP 2024; 24:3233-3242. [PMID: 38835278 PMCID: PMC11198391 DOI: 10.1039/d4lc00311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024]
Abstract
The impact of fluid flow shear stresses, generated by the movement of blood through vasculature, on the organization and maturation of vessels is widely recognized. Nevertheless, it remains uncertain whether external fluid flows outside of the vasculature in the surrounding tissue can similarly play a role in governing these processes. In this research, we introduce an innovative technique called superfusion-induced vascular steering (SIVS). SIVS involves the controlled imposition of external fluid flow patterns onto the vascularized chick chorioallantoic membrane (CAM), allowing us to observe how this impacts the organization of vascular networks. To investigate the concept of SIVS, we conducted superfusion experiments on the intact chick CAM cultured within an engineered eggshell system, using phosphate buffered saline (PBS). To capture and analyze the effects of superfusion, we employed a custom-built microscopy setup, enabling us to image both superfused and non-superfused regions within the developing CAM. This study provides valuable insights into the practical application of fluid superfusion within an in vivo context, shedding light on its significance for understanding tissue development and manipulation in an engineering setting.
Collapse
Affiliation(s)
- Prasanna Padmanaban
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Center, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| | - Danny van Galen
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Center, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| | - Nasim Salehi-Nik
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Center, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on Chip group, MESA+ Institute for Nanotechnology, Technical Medical Center, Max Planck Institute for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Loes Segerink
- BIOS Lab on Chip group, MESA+ Institute for Nanotechnology, Technical Medical Center, Max Planck Institute for Complex Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Center, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
8
|
Tang Y, Jiang S, Sottosanti JS, Usherwood T, Cao X, Bateman LM, Fisher LA, Henderson ER, Gitajn IL, Elliott JT. Patient-specific arterial input function for accurate perfusion assessment in intraoperative fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33306. [PMID: 39247899 PMCID: PMC11379448 DOI: 10.1117/1.jbo.29.s3.s33306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
Significance The arterial input function (AIF) plays a crucial role in correcting the time-dependent concentration of the contrast agent within the arterial system, accounting for variations in agent injection parameters (speed, timing, etc.) across patients. Understanding the significance of the AIF can enhance the accuracy of tissue vascular perfusion assessment through indocyanine green-based dynamic contrast-enhanced fluorescence imaging (DCE-FI). Aim We evaluate the impact of the AIF on perfusion assessment through DCE-FI. Approach A total of 144 AIFs were acquired from 110 patients using a pulse dye densitometer. Simulation and patient intraoperative imaging were conducted to validate the significance of AIF for perfusion assessment based on kinetic parameters extracted from fluorescence images before and after AIF correction. The kinetic model accuracy was evaluated by assessing the variability of kinetic parameters using individual AIF versus population-based AIF. Results Individual AIF can reduce the variability in kinetic parameters, and population-based AIF can potentially replace individual AIF for estimating wash-out rate (k ep ), maximum intensity (I max ), ingress slope with lower differences compared with those in estimating blood flow, volume transfer constant (K trans ), and time to peak. Conclusions Individual AIF can provide the most accurate perfusion assessment compared with assessment without AIF or based on population-based AIF correction.
Collapse
Affiliation(s)
- Yue Tang
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Joseph S. Sottosanti
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Thomas Usherwood
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Xu Cao
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Logan M. Bateman
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Lillian A. Fisher
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Eric R. Henderson
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Ida Leah Gitajn
- Dartmouth Health, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | | |
Collapse
|
9
|
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Advances in 3D bioprinting for regenerative medicine applications. Regen Biomater 2024; 11:rbae033. [PMID: 38845855 PMCID: PMC11153344 DOI: 10.1093/rb/rbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Biofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages. For the preparation of such bioinks, various water-soluble biomaterials have been employed, including natural and synthetic biopolymers, and inorganic materials. Bioprinted constructs are considered to be one of the most promising avenues in regenerative medicine due to their native organ biomimicry. For a successful application, the bioprinted constructs should meet particular criteria such as optimal biological response, mechanical properties similar to the target tissue, high levels of reproducibility and printing fidelity, but also increased upscaling capability. In this review, we highlight the most recent advances in bioprinting, focusing on the regeneration of various tissues including bone, cartilage, cardiovascular, neural, skin and other organs such as liver, kidney, pancreas and lungs. We discuss the rapidly developing co-culture bioprinting systems used to resemble the complexity of tissues and organs and the crosstalk between various cell populations towards regeneration. Moreover, we report on the basic physical principles governing 3D bioprinting, and the ideal bioink properties based on the biomaterials' regenerative potential. We examine and critically discuss the present status of 3D bioprinting regarding its applicability and current limitations that need to be overcome to establish it at the forefront of artificial organ production and transplantation.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Nikos Koutsomarkos
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion 70013, Greece
| |
Collapse
|
10
|
Chen L, Wang M, Feng Y, Gao L, Yu J, Geng L, Xie Y, Coudyzer W, Li Y, Ni Y. Multi-parametric investigations on the effects of vascular disrupting agents based on a platform of chorioallantoic membrane of chick embryos. Quant Imaging Med Surg 2024; 14:1729-1746. [PMID: 38415159 PMCID: PMC10895113 DOI: 10.21037/qims-23-1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 02/29/2024]
Abstract
Background Vascular disrupting agents (VDAs) are known to specifically target preexisting tumoural vasculature. However, systemic side effects as safety or toxicity issues have been reported from clinical trials, which call for further preclinical investigations. The purpose is to gain insights into their non-specific off-targeting effects on normal vasculature and provide clues for exploring underlying molecular mechanisms. Methods Based on a recently introduced platform consisting laser speckle contrast imaging (LSCI), chick embryo chorioallantoic membrane (CAM), and assisted deep learning techniques, for evaluation of vasoactive medicines, hemodynamics on embryonic day 12 under constant intravascular infusion of two VDAs were qualitatively observed and quantitatively measured in real time for 30 min. Blood perfusion, vessel diameter, vessel density, and vessel total length were further analyzed and compared between blank control and medicines dose groups by using multi-factor analysis of variance (ANOVA) analysis with factorial interactions. Conventional histopathology and fluorescent immunohistochemistry (FIHC) assays for endothelial cytoskeleton including ß-tubulin and F-actin were qualitatively demonstrated, quantitatively analyzed and further correlated with hemodynamic and vascular parameters. Results The normal vasculature was systemically negatively affected by VDAs with statistical significance (P<0.0001), as evidenced by four positively correlated parameters, which can explain the side-effects observed among clinical patients. Such effects appeared to be dose dependent (P<0.0001). FIHC assays qualitatively and quantitatively verified the results and exposed molecular mechanisms. Conclusions LSCI-CAM platform combining with deep learning technique proves useful in preclinical evaluations of vasoactive medications. Such new evidences provide new reference to clinical practice.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Theragnostic Laboratory, Campus Gasthuisberg, Leuven, Belgium
| | - Mingpei Wang
- Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Yuanbo Feng
- KU Leuven, Theragnostic Laboratory, Campus Gasthuisberg, Leuven, Belgium
| | - Lingjie Gao
- KU Leuven, Theragnostic Laboratory, Campus Gasthuisberg, Leuven, Belgium
| | - Jie Yu
- KU Leuven, Theragnostic Laboratory, Campus Gasthuisberg, Leuven, Belgium
| | - Lei Geng
- School of Life Science, TianGong University, Tianjin, China
| | - Yiyang Xie
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yicheng Ni
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Liu HL, Yuan Y, Han L, Bi Y, Yu WY, Yu Y. Wide dynamic range measurement of blood flow in vivo using laser speckle contrast imaging. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:016009. [PMID: 38283936 PMCID: PMC10821768 DOI: 10.1117/1.jbo.29.1.016009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Significance Laser speckle contrast imaging (LSCI) is a real-time wide-field technique that is applied to visualize blood flow in biomedical applications. However, there is currently a lack of relevant research to demonstrate that it can measure velocities over a wide dynamic range (WDR), which is critical for monitoring much higher and more pulsatile blood flow in larger size myocardial vessels, such as the coronary artery bypass graft, and visualizing the spatio-temporal evolution of myocardial blood flow perfusion in cardiac surgery. Aim We aim to demonstrate that the LSCI technique enables measuring velocities over a WDR from phantom experiments to animal experiments. In addition, LSCI is preliminarily applied to imaging myocardial blood flow distribution in vivo on rabbits. Approach Phantom and animal experiments are performed to verify that the LSCI method has the ability to measure blood velocities over a wide range. Our method is also validated by transit time flow measurement, which is the gold standard for blood flow measurement in cardiac surgery. Results Our method is demonstrated to measure the blood flow over a wide range from 0.2 to 635 mm / s . To validate the phantom results, the varying blood flow rate from 0 to 320 mm / s is detected in the rat carotid artery. Additionally, our technique also obtains blood flow maps of different myocardial vessels, such as superficial large/small veins, veins surrounded by fat, and myocardial deeper arteriole. Conclusions Our study has the potential to visualize the spatio-temporal evolution of myocardial perfusion in coronary artery bypass grafting, which would be of great benefit for future research in the life sciences and clinical medicine.
Collapse
Affiliation(s)
- Hong Li Liu
- Beijing Anzhen Hospital of Capital Medical University, Department of Cardiovascular Surgery, Beijing, China
| | - Yuan Yuan
- Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Center of Applied Laser, Beijing, China
| | - Li Han
- Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Center of Applied Laser, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Bi
- Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Center of Applied Laser, Beijing, China
| | - Wen Yuan Yu
- Beijing Anzhen Hospital of Capital Medical University, Department of Cardiovascular Surgery, Beijing, China
| | - Yang Yu
- Beijing Anzhen Hospital of Capital Medical University, Department of Cardiovascular Surgery, Beijing, China
| |
Collapse
|
12
|
Kaya M, Stein F, Padmanaban P, Zhang Z, Rouwkema J, Khalil ISM, Misra S. Visualization of micro-agents and surroundings by real-time multicolor fluorescence microscopy. Sci Rep 2022; 12:13375. [PMID: 35927294 PMCID: PMC9352757 DOI: 10.1038/s41598-022-17297-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Optical microscopy techniques are a popular choice for visualizing micro-agents. They generate images with relatively high spatiotemporal resolution but do not reveal encoded information for distinguishing micro-agents and surroundings. This study presents multicolor fluorescence microscopy for rendering color-coded identification of mobile micro-agents and dynamic surroundings by spectral unmixing. We report multicolor microscopy performance by visualizing the attachment of single and cluster micro-agents to cancer spheroids formed with HeLa cells as a proof-of-concept for targeted drug delivery demonstration. A microfluidic chip is developed to immobilize a single spheroid for the attachment, provide a stable environment for multicolor microscopy, and create a 3D tumor model. In order to confirm that multicolor microscopy is able to visualize micro-agents in vascularized environments, in vitro vasculature network formed with endothelial cells and ex ovo chicken chorioallantoic membrane are employed as experimental models. Full visualization of our models is achieved by sequential excitation of the fluorophores in a round-robin manner and synchronous individual image acquisition from three-different spectrum bands. We experimentally demonstrate that multicolor microscopy spectrally decomposes micro-agents, organic bodies (cancer spheroids and vasculatures), and surrounding media utilizing fluorophores with well-separated spectrum characteristics and allows image acquisition with 1280 [Formula: see text] 1024 pixels up to 15 frames per second. Our results display that real-time multicolor microscopy provides increased understanding by color-coded visualization regarding the tracking of micro-agents, morphology of organic bodies, and clear distinction of surrounding media.
Collapse
Affiliation(s)
- Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands. .,Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | - Fabian Stein
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Prasanna Padmanaban
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Zhengya Zhang
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Islam S M Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB, Enschede, The Netherlands.,Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
13
|
Chen L, Wang S, Feng Y, Yu J, Coudyzer W, Van Ongeval C, Geng L, Li Y, Ni Y. Development and characterization of a chick embryo chorioallantoic membrane (CAM) based platform for evaluation of vasoactive medications. Microvasc Res 2022; 142:104372. [PMID: 35483521 DOI: 10.1016/j.mvr.2022.104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
Abstract
Among various anti-cancer therapies, tumor vascular disrupting agents (VDAs) play a crucial role, for which their off-targeting effects on normal vessels need also to be investigated. The purpose of this study was to set up an in-ovo platform that combines a laser speckle contrast imaging (LSCI) modality with chick embryo chorioallantoic membrane (CAM) to real-time monitor vascular diameters and perfusion without and with intravascular injection. Two eggshell windows for both observation or measurement and injection were opened. Dynamic blood perfusion images and corresponding statistic graphs were acquired by using a LSCI unit on CAMs from embryo date (ED) 9 to ED15. A dedicated fine needle catheter was made for slow intravascular administration over 30 min with simultaneous LSCI acquisition. To verify the connectivity between CAM vessels and the embryonic circulations in the egg, contrast-enhanced 3D micro computed tomography (μCT), 2D angiography and histology were executed. This platform was successfully established to acquire, quantify and demonstrate vascular and hemodynamic information from the CAM. Chick embryos even with air cell opened remained alive from ED9 to ED15. Through collecting LSCI derived CAM vascular diameter and perfusion parameters, ED12 was determined as the best time window for vasoactive drug studies. A reverse correlation between CAM vessel diameter and blood perfusion rate was found (p < 0.002). Intravascular infusion and simultaneous LSCI acquisition for 30 min in ovo proved feasible. Contrast-enhanced angiography and histomorphology could characterize the connectivity between CAM vasculature and embryonic circulation. This LSCI-CAM platform was proved effective for investigating the in-ovo hemodynamics, which paves the road for further preclinical research on vasoactive medications including VDAs.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Jie Yu
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Lei Geng
- School of Life Science, TianGong University, Tianjin, China.
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| |
Collapse
|