1
|
Hou L, Zhu H, Xian W, Ma Y. Selection and validation of stable reference genes in potato infected by Pectobacterium atrosepticum using real-time quantitative PCR. Sci Rep 2025; 15:14205. [PMID: 40268985 PMCID: PMC12019324 DOI: 10.1038/s41598-025-97542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
Potato blackleg disease is caused by Pectobacterium atrosepticum, can seriously destroy potatoes' growth and development. To accurately evaluate the expression levels of genes involved in potato (Solanum tuberosum) responses to P. atrosepticum infection, seven candidate reference genes (EF1α, eIF5A3, Tubulin, Ubiquitin, GAPDH, Actin, and CYP3) were systematically assessed for their expression stability at 1, 3, and 5 days after inoculation (dai) using the geNorm, NormFinder, BestKeeper, ∆Ct, and RefFinder algorithms. The results demonstrated that EF1α exhibited the highest stability among all experimental conditions, followed by eIF5A3 and Tubulin, whereas Ubiquitin displayed the least stability. To validate the screening outcomes, the expression patterns of four disease resistance-related genes (RBOHC, WRKY24, MPK3, and CPK32) were analyzed in both resistant and susceptible potato cultivars using the EF1α as the most stable and Ubiquitin as the least stable. Validation experiments revealed that the expression levels of disease resistance-related genes were stable and consistent with the RNA-Seq data when EF1α was used as a reference gene. In contrast, using Ubiquitin as a reference gene led to significant variability. Therefore, EF1α can be employed as the reference gene when studying the interaction between the potato and P. atrosepticum, providing a standardized reference for the subsequent studies on screening of disease resistance genes and exploring of disease resistance mechanism in potato.
Collapse
Affiliation(s)
- Lijuan Hou
- Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251, Ningda Road, Xining, 810016, Qinghai, People's Republic of China
- Key Laboratory of Agricultural Integrated Pest Management in Qinghai, Xining, 810016, China
| | - Haixia Zhu
- Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251, Ningda Road, Xining, 810016, Qinghai, People's Republic of China
- Key Laboratory of Agricultural Integrated Pest Management in Qinghai, Xining, 810016, China
| | - Wenrong Xian
- Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251, Ningda Road, Xining, 810016, Qinghai, People's Republic of China
- Key Laboratory of Agricultural Integrated Pest Management in Qinghai, Xining, 810016, China
| | - Yongqiang Ma
- Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251, Ningda Road, Xining, 810016, Qinghai, People's Republic of China.
- Key Laboratory of Agricultural Integrated Pest Management in Qinghai, Xining, 810016, China.
| |
Collapse
|
2
|
Zhou F, Xu L, Shi C, Wu F, Yang S. Identification of the Optimal Quantitative RT-PCR Reference Gene for Paper Mulberry ( Broussonetia papyrifera). Curr Issues Mol Biol 2024; 46:10779-10794. [PMID: 39451520 PMCID: PMC11506246 DOI: 10.3390/cimb46100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Paper Mulberry (Broussonetia papyrifera) possesses medicinal, economic, and ecological significance and is extensively used for feed production, papermaking, and ecological restoration due to its ease of propagation, rapid growth rate, and strong stress resistance. The recent completion of the sequencing of the Paper Mulberry genome has prompted further research into the genetic breeding and molecular biology of this important species. A highly stable reference gene is essential to enhance the quantitative analysis of functional genes in Paper Mulberry; however, none has been identified. Accordingly, in this study, the leaves, stems, roots, petioles, young fruits, and mature fruits of Paper Mulberry plants were selected as experimental materials, and nine candidate reference genes, namely, α-TUB1, α-TUB2, β-TUB, H2A, ACT, DnaJ, UBQ, CDC2, and TIP41, were identified by RT-qPCR. Their stability was assessed using the geNorm, Normfinder, Delta Ct, BestKeeper, and RefFinder algorithms, identifying ACT and UBQ as showing the greatest stability. The expression of BpMYB090, which regulates the production of trichomes, was examined in the leaves of plants of the wild type (which have more trichomes) and mutant (which have fewer trichomes) at various developmental stages to validate the results of this study. As a result, their identification addresses a critical gap in the field of Paper Mulberry research, providing a solid foundation for future research that will concentrate on the characterization of pertinent functional genes in this economically valuable species.
Collapse
Affiliation(s)
| | | | | | | | - Shaozong Yang
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang Academy of Forestry, Hangzhou 310023, China; (F.Z.); (L.X.); (C.S.); (F.W.)
| |
Collapse
|
3
|
Gomes TG, de Assis Fonseca FC, Alves GSC, de Siqueira FG, Miller RNG. Development of reference genes for RT-qPCR analysis of gene expression in Pleurotus pulmonarius for biotechnological applications. Sci Rep 2023; 13:12296. [PMID: 37516784 PMCID: PMC10387064 DOI: 10.1038/s41598-023-39115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Jatropha curcas is an oilseed crop with biorefinery applications. Whilst cake generated following oil extraction offers potential as a protein source for animal feed, inactivation of toxic phorbol esters present in the material is necessary. Pleurotus pulmonarius is a detoxifying agent for jatropha cake with additional potential as animal feed, edible mushroom and for enzyme production. For the characterization of fungal genes involved in phorbol ester degradation, together with other industrial applications, reverse transcription-quantitative PCR (RT-qPCR) is a tool that enables accurate quantification of gene expression. For this, reliable analysis requires reference genes for normalization of mRNA levels validated under conditions employed for target genes. The stability of potential reference genes β-TUB, ACTIN, GAPDH, PHOS, EF1α, TRPHO, LAC, MNP3, MYP and VP were evaluated following growth of P. pulmonarius on toxic, non-toxic jatropha cake and a combined treatment, respectively. NormFinder and geNorm algorithms for expression stability analysis identified PHOS, EF1α and MNP3 as appropriate for normalizing gene expression. Reference gene combinations contrasting in ranking were compared following normalization of relative expression of the CHU_2040 gene, encoding an esterase enzyme potentially involved in phorbol ester degradation. The reference genes for P. pulmonarius will facilitate the elucidation of mechanisms involved in detoxification of phorbol esters as well as analysis of target genes for application in biorefinery models.
Collapse
Affiliation(s)
- Taísa Godoy Gomes
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | - Fernando Campos de Assis Fonseca
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- Instituto Federal de Goiás (IFG), Águas Lindas, GO, 72910-733, Brazil
| | - Gabriel Sergio Costa Alves
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
| | | | - Robert Neil Gerard Miller
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Zhao Q, Geng MY, Xia CJ, Lei T, Wang J, Cao CD, Wang J. Identification, genetic diversity, and pathogenicity of Ralstonia pseudosolanacearum causing cigar tobacco bacterial wilt in China. FEMS Microbiol Ecol 2023; 99:fiad018. [PMID: 36822630 DOI: 10.1093/femsec/fiad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Ralstonia pseudosolanacearum, previously known as R. solanacearum species complex (RSSC) phylotypes I and III, is a plant pathogenic bacterium causing significant yield losses in economical crops. In the May of 2020 and 2021, cigar tobacco bacterial wilt was first observed in fields in Danzhou, Hainan Province, China. A total of eight bacterial isolates were isolated and identified as R. pseudosolanacearum with race 1, biovar III by 16S rRNA gene sequencing, Biolog, and host identification. The amino acid sequence showed that Hainan strains and 15 R. pseudosolanacearum reference strains from flue-cured tobacco in Shandong and Guizhou Provinces, all belonged to RS1000 type containing the avrA gene, only Guizhou strains also had the popP1 gene. On the basis of phylotype-specific multiplex PCR amplification, mismatch repair gene and endoglucanase gene-base tree, Hainan strains were identified as phylotype I sequevar 70, and showed stronger pathogenic capabilities on three different varieties than those reference strains. This is the first report of cigar tobacco bacterial wilt caused by R. pseudosolanacearum sequevar 70. The results revealed the diversity of RSSC in Nicotiana tabacum in China and provided useful information regarding the epidemiology of cigar tobacco wilt disease, as well as the breeding for disease resistance in local cigar tobacco.
Collapse
Affiliation(s)
- Qian Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
- Nanjing Agricultural University, No.1 Weigang, Xuanwu District, Nanjing, Jiangsu 210095, China
| | - Ming-Yan Geng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
| | - Chang-Jian Xia
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, No.120 Hongchenghu Road, Qiongshan District, Haikou, Hainan 571103, China
| | - Ting Lei
- Qiannan Branch of Guizhou Tobacco Corporation, No.8 Hebin, Duyun, Guizhou 558000, China
| | - Jie Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
| | - Chang-Dai Cao
- Rizhao Branch of Shandong Tobacco Corporation, No.269 Juzhou, Donggang District, Rizhao, Shandong 276800, China
| | - Jing Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.4 Keyuanjing, Laoshan District, Qingdao, Shandong 266101, China
| |
Collapse
|
5
|
Sowa S, Sozoniuk M, Toporowska J, Kowalczyk K, Paczos-Grzęda E. Reference genes expression stability in Avena sativa L. during compatible and incompatible interactions with Puccinia graminis. Sci Rep 2022; 12:18369. [PMID: 36319744 PMCID: PMC9626582 DOI: 10.1038/s41598-022-22993-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
A reliable qPCR experiment requires the selection of reference genes with a stable level of expression in a given experimental system. This study attempts to determine the reference genes (RGs) for the A. sativa-P. graminis experimental setup. We evaluated nine candidate reference genes in A. sativa (oat line Pg4 and the cultivar Kasztan) during compatible and incompatible interactions with different pathotypes of Puccinia graminis f. sp. avenae in six time points post-inoculation. The identification of genes with high expression stability was performed by four algorithms (geNorm, NormFinder, BestKeeper and ΔCt method). We found that the most appropriate combination of RGs for RT-qPCR data normalization were HNR (heterogeneous nuclear ribonucleoprotein 27C) + EF1A (elongation factor 1-alpha) + EIF4A (eukaryotic initiation factor 4A-3). The worst candidates for normalization in this dataset were CYP (cyclophilin) and TUA (alpha tubulin). Identified reference genes are suitable candidates for the standardization of gene expression studies in the A. sativa-P. graminis interaction system and potentially other related pathogens. To date, this is the first report of RGs selection in this pathosystem.
Collapse
Affiliation(s)
- Sylwia Sowa
- grid.411201.70000 0000 8816 7059Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- grid.411201.70000 0000 8816 7059Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Joanna Toporowska
- grid.411201.70000 0000 8816 7059Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Krzysztof Kowalczyk
- grid.411201.70000 0000 8816 7059Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Edyta Paczos-Grzęda
- grid.411201.70000 0000 8816 7059Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
6
|
Li S, Zhou Y, Yuan T, Feng Z, Zhang Z, Wu Y, Xie Q, Wang J, Li Q, Deng Z, Yu Y, Yuan X. Selection of internal reference gene for normalization of reverse transcription-quantitative polymerase chain reaction analysis in Mycoplasma hyopneumoniae. Front Vet Sci 2022; 9:934907. [PMID: 35937288 PMCID: PMC9355380 DOI: 10.3389/fvets.2022.934907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), which resulting in considerable economic losses in pig farming globally. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a major tool for gene expression studies. However, no internal reference genes for normalization of RT-qPCR data of M. hyopneumoniae have been reported. The aim of this study was to screen the most stable genes for RT-qPCR analysis in M. hyopneumoniae under different conditions. Therefore, a total of 13 candidate internal reference genes (rpoC, Lipo, sgaB, oppB, hypo621, oppF, gyrB, uvrA, P146, prfA, proS, gatB, and hypo499) of M. hyopneumoniae filtered according to the reported quantitative proteomic analysis and the 16S rRNA internal reference gene frequently used in other bacteria were selected for RT-qPCR analysis. The mRNAs from different virulence strains (168, 168 L, J, NJ, and LH) at five different growth phases were extracted. The corresponding cycle threshold (Ct) values of the 25 reverse transcribed cDNAs using the 14 candidate genes were determined. Different internal reference genes or combinations were then screened for expression stability analysis using various statistical tools and algorithms, including geNorm, BestKeeper, and NormFinder software, to ensure the reliability of the analysis. Through further comprehensive evaluation of the RefFinder software, it is concluded that the gatB gene was the most suitable internal reference gene for samples of the different virulence strains in different growth phases for M. hyopneumoniae, followed by prfA, hypo499, and gyrB.
Collapse
Affiliation(s)
- Shiyang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yanqing Zhou
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Ting Yuan
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Yuzi Wu
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Qingyun Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhibang Deng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yanfei Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yanfei Yu
| | - Xiaomin Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Xiaomin Yuan
| |
Collapse
|
7
|
Barchenger DW, Hsu YM, Ou JY, Lin YP, Lin YC, Balendres MAO, Hsu YC, Schafleitner R, Hanson P. Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (Ralstonia sp.) resistance in tomato. Sci Rep 2022; 12:8374. [PMID: 35589778 PMCID: PMC9120091 DOI: 10.1038/s41598-022-12326-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/07/2022] [Indexed: 01/19/2023] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most economically important vegetable crops worldwide. Bacterial wilt (BW), caused by the Ralstonia solanacearum species complex, has been reported as the second most important plant pathogenic bacteria worldwide, and likely the most destructive. Extensive research has identified two major loci, Bwr-6 and Bwr-12, that contribute to resistance to BW in tomato; however, these loci do not completely explain resistance. Segregation of resistance in two populations that were homozygous dominant or heterozygous for all Bwr-6 and Bwr-12 associated molecular markers suggested the action of one or two resistance loci in addition to these two major QTLs. We utilized whole genome sequence data analysis and pairwise comparison of six BW resistant and nine BW susceptible tomato lines to identify candidate genes that, in addition to Bwr-6 and Bwr-12, contributed to resistance. Through this approach we found 27,046 SNPs and 5975 indels specific to the six resistant lines, affecting 385 genes. One sequence variant on chromosome 3 captured by marker Bwr3.2dCAPS located in the Asc (Solyc03g114600.4.1) gene had significant association with resistance, but it did not completely explain the resistance phenotype. The SNP associated with Bwr3.2dCAPS was located within the resistance gene Asc which was inside the previously identified Bwr-3 locus. This study provides a foundation for further investigations into new loci distributed throughout the tomato genome that could contribute to BW resistance and into the role of resistance genes that may act against multiple pathogens.
Collapse
Affiliation(s)
| | - Yu-Ming Hsu
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Jheng-Yang Ou
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | | | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Mark Angelo O Balendres
- Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | | | | | | |
Collapse
|
8
|
Insights of the Neofusicoccum parvum- Liquidambar styraciflua Interaction and Identification of New Cysteine-Rich Proteins in Both Species. J Fungi (Basel) 2021; 7:jof7121027. [PMID: 34947009 PMCID: PMC8707630 DOI: 10.3390/jof7121027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neofusicoccum parvum belongs to the Botryosphaeriaceae family, which contains endophytes and pathogens of woody plants. In this study, we isolated 11 strains from diseased tissue of Liquidambar styraciflua. Testing with Koch's postulates-followed by a molecular approach-revealed that N. parvum was the most pathogenic strain. We established an in vitro pathosystem (L. styraciflua foliar tissue-N. parvum) in order to characterize the infection process during the first 16 days. New CysRPs were identified for both organisms using public transcriptomic and genomic databases, while mRNA expression of CysRPs was analyzed by RT-qPCR. The results showed that N. parvum caused disease symptoms after 24 h that intensified over time. Through in silico analysis, 5 CysRPs were identified for each organism, revealing that all of the proteins are potentially secreted and novel, including two of N. parvum proteins containing the CFEM domain. Interestingly, the levels of the CysRPs mRNAs change during the interaction. This study reports N. parvum as a pathogen of L. styraciflua for the first time and highlights the potential involvement of CysRPs in both organisms during this interaction.
Collapse
|