1
|
Shah H, Khan K, Badshah Y, Trembley JH, Ashraf NM, Shabbir M, Afsar T, Aldisi D, Khan D, Razak S. Unravelling the role of PRKCI and key-cancer related genes in breast cancer development and metastasis. Discov Oncol 2025; 16:350. [PMID: 40100546 PMCID: PMC11920535 DOI: 10.1007/s12672-025-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Breast cancer is one of the most common causes of fatalities in females globally. Rising cases of drug resistance against existing chemotherapeutics are great problem. To address this issue, there is a need to find appropriate biomarker that could be used to detect cancer at early stages, so drug resistance development can be avoided. Protein Kinase C iota (PKCɩ), an AGC kinase, has an oncogenic role in cancers and its expression and Single nucleotide polymorphisms (SNPs) have been reported to be associated with the cancer development. So, the study aims were to examine the expression of PKCɩ, Protein Kinase B (AKT), Suppressor of cytokine signaling 3 (SOCS3), Vascular endothelial growth factor (VEGF), Krupple like factor 3 (KLF3), Tumor protein D52 (TPD52), Hypoxia inducible factor (HIF1α) and microRNA-124 (miR-124) in breast cancer and association of PKCɩ variants (G34W & F66Y) with breast cancer. METHODS Genetic expression assay was performed through real time Polymerase Chain reaction (PCR), whereas the genotypic association of PKCɩ SNPs with breast cancer was accomplished through Tetra-ARMS PCR. RESULTS The expression levels of PKCɩ, AKT, SOC3, VEGF, HIF1α and TPD52 were elevated in patients as compared to control whereas the expression levels of miR-124 and KLF3 were lowered in patients. Positive association of variant G34W (TT) of PKCɩ with breast cancer has been explored through ARM's PCR, while no association of variant F66Y with breast cancer was found. CONCLUSION Hence, the results suggest that PKCɩ and related genes can have a role in breast cancer and after further verification can serve as the potential biomarkers for the early-diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Hania Shah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Punjab, Lahore, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dilawer Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Knihs VM, Filippin-Monteiro FB. GLP1R (glucagon-like-peptide-1 incretin receptor), diabetes and obesity phenotypes: An in silico approach revealed new pathogenic variants. Diabetes Metab Syndr 2024; 18:102956. [PMID: 38364583 DOI: 10.1016/j.dsx.2024.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/28/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor belongs to the B family of G protein-coupled receptors, serving as a binding protein in membranes and is widely expressed in human tissues. Upon stimulation by its agonist, the glucagon-like peptide-1, the receptor plays a role in glucose metabolism, enhancing insulin secretion, and regulating appetite in the hypothalamus. Mutations in the glucagon-like peptide-1 receptor gene can lead to physiological changes that may explain phenotypic variations in individuals with obesity and diabetes. Therefore, this study aimed to evaluate missense variants of the glucagon-like peptide-1 receptor gene. METHODS Data mining was performed on the single nucleotide polymorphism database, retrieving a total of 16,399 variants. Among them, 356 were missense. These 356 variants were analyzed using the PolyPhen-2 and filtered based on allele frequency, resulting in 6 pathogenic variants. RESULTS D344E, A239T, R310Q, R227H, R421P, and R176G were analyzed using four different prediction tools. The D344E and A239T resulted in larger amino acid residues compared to their wild-type counterparts. The D344E showed a slightly destabilized structure, while A239T affected the transmembrane helices. Conversely, the R310Q, R227H, R421P, and R176G resulted in smaller amino acid residues than the wild-type, leading to a loss of positive charge and increased hydrophobicity. Particularly, the R421P, due to the presence of proline, significantly destabilized the α-helix structure and caused severe damage to the receptor. CONCLUSION Elucidating the glucagon-like peptide-1 receptor variants and their potentially detrimental effects on receptor functionality can contribute to an understanding of metabolic diseases and the response to available pharmacological treatments.
Collapse
Affiliation(s)
- Vinicius Matheus Knihs
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040900, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040900, Brazil.
| |
Collapse
|
3
|
Hafeez A, Shabbir M, Khan K, Trembley JH, Badshah Y, Zafar S, Shahid K, Shah H, Ashraf NM, Hamid A, Afsar T, Almajwal A, Marium A, Razak S. Possible prognostic impact of PKCι genetic variants in prostate cancer. Cancer Cell Int 2024; 24:24. [PMID: 38200472 PMCID: PMC10782671 DOI: 10.1186/s12935-023-03182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) have been linked with prostate cancer (PCa) and have shown potential as prognostic markers for advanced stages. Loss of function mutations in PKCι have been linked with increased risk of malignancy by enhancing tumor cell motility and invasion. We have evaluated the impact of two coding region SNPs on the PKCι gene (PRKCI) and their prognostic potential. METHODS Genotypic association of non-synonymous PKCι SNPs rs1197750201 and rs1199520604 with PCa was determined through tetra-ARMS PCR. PKCι was docked with interacting partner Par-6 to determine the effect of these variants on PKCι binding capabilities. Molecular dynamic simulations of PKCι docked with Par-6 were performed to determine variant effects on PKCι protein interactions. The possible impact of changes in PKCι protein interactions on epithelial cell polarity was hypothesized. RESULTS PKCι rs1199520604 mutant genotype TT showed association with PCa (p = 0.0055), while rs1197750201 mutant genotype AA also showed significant association with PCa (P = 0.0006). The binding interaction of PKCι with Par-6 was altered for both variants, with changes in Van der Waals energy and electrostatic energy of docked structures. CONCLUSION Genotypic analysis of two non-synonymous PKCι variants in association with PCa prognosis was performed. Both variants in the PB1 domain showed potential as a prognostic marker for PCa. In silico analysis of the effect of the variants on PKCι protein interactions indicated they may be involved in PCa progression through aberration of epithelial cell polarity pathways.
Collapse
Affiliation(s)
- Amna Hafeez
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan.
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Sameen Zafar
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Kanza Shahid
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Hania Shah
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Punjab, Pakistan
| | - Arslan Hamid
- University of Bonn, LIMES Institute (AG-Netea), Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afifa Marium
- Department of Healthcare Biotechnology, Rahman School of Applied Biosciences, National University of Sciences and Technology, Atta-Ur, Islamabad, Pakistan
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Shakoor S, Rao AQ, Ajmal S, Yasmeen A, Khan MAU, Sadaqat S, Ashraf NM, Wolter F, Pacher M, Husnain T. Multiplex Cas9-based excision of CLCuV betasatellite and DNA-A revealed reduction of viral load with asymptomatic cotton plants. PLANTA 2023; 258:79. [PMID: 37698688 DOI: 10.1007/s00425-023-04233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
MAIN CONCLUSION Multiplexed Cas9-based genome editing of cotton resulted in reduction of viral load with asymptomatic cotton plants. In depth imaging of proteomic dynamics of resulting CLCuV betasatellite and DNA-A protein was also performed. The notorious cotton leaf curl virus (CLCuV), which is transmitted by the sap-sucking insect whitefly, continuously damages cotton crops. Although the application of various toxins and RNAi has shown some promise, sustained control has not been achieved. Consequently, CRISPR_Cas9 was applied by designing multiplex targets against DNA-A (AC2 and AC3) and betasatellite (βC1) of CLCuV using CRISPR direct and ligating into the destination vector of the plant using gateway ligation method. The successful ligation of targets into the destination vector was confirmed by the amplification of 1049 bp using a primer created from the promoter and target, while restriction digestion using the AflII and Asc1 enzymes determined how compact the plasmid developed and the nucleotide specificity of the plasmid was achieved through Sanger sequencing. PCR confirmed the successful introduction of plasmid into CKC-1 cotton variety. Through Sanger sequencing and correlation with the mRNA expression of DNA-A and betasatellite in genome-edited cotton plants subjected to agroinfiltration of CLCuV infectious clone, the effectiveness of knockout was established. The genome-edited cotton plants demonstrated edited efficacy of 72% for AC2 and AC3 and 90% for the (βC1) through amplicon sequencing, Molecular dynamics (MD) simulations were used to further validate the results. Higher RMSD values for the edited βC1 and AC3 proteins indicated functional loss caused by denaturation. Thus, CRISPR_Cas9 constructs can be rationally designed using high-throughput MD simulation technique. The confidence in using this technology to control plant virus and its vector was determined by the knockout efficiency and the virus inoculation assay.
Collapse
Affiliation(s)
- Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Sara Ajmal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | | | - Sahar Sadaqat
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Felix Wolter
- Pacific Biosciences, Bonn, Nordrhein-Westfalen, Deutschland
| | - Michael Pacher
- CureVac Manufacturing GmbH, Tübingen, Baden-Württemberg, Deutschland
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| |
Collapse
|
5
|
Zafar S, Khan K, Badshah Y, Shahid K, Trembley JH, Hafeez A, Ashraf NM, Arslan H, Shabbir M, Afsar T, Almajwal A, Razak S. Exploring the prognostic significance of PKCε variants in cervical cancer. BMC Cancer 2023; 23:819. [PMID: 37667176 PMCID: PMC10476323 DOI: 10.1186/s12885-023-11236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Protein Kinase C-epsilon (PKCε) is a member of the novel subfamily of PKCs (nPKCs) that plays a role in cancer development. Studies have revealed that its elevated expression levels are associated with cervical cancer. Previously, we identified pathogenic variations in its different domains through various bioinformatics tools and molecular dynamic simulation. In the present study, the aim was to find the association of its variants rs1553369874 and rs1345511001 with cervical cancer and to determine the influence of these variants on the protein-protein interactions of PKCε, which can lead towards cancer development and poor survival rates. METHODS The association of the variants with cervical cancer and its clinicopathological features was determined through genotyping analysis. Odds ratio and relative risk along with Fisher exact test were calculated to evaluate variants significance and disease risk. Protein-protein docking was performed and docked complexes were subjected to molecular dynamics simulation to gauge the variants impact on PKCε's molecular interactions. RESULTS This study revealed that genetic variants rs1553369874 and rs1345511001 were associated with cervical cancer. Smad3 interacts with PKCε and this interaction promotes cervical cancer angiogenesis; therefore, Smad3 was selected for protein-protein docking. The analysis revealed PKCε variants promoted aberrant interactions with Smad3 that might lead to the activation of oncogenic pathways. The data obtained from this study suggested the prognostic significance of PRKCE gene variants rs1553369874 and rs1345511001. CONCLUSION Through further in vitro and in vivo validation, these variants can be used at the clinical level as novel prognostic markers and therapeutic targets against cervical cancer.
Collapse
Affiliation(s)
- Sameen Zafar
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Kanza Shahid
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Janeen H Trembley
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
| | - Amna Hafeez
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hamid Arslan
- University of Bonn, LIMES Institute (AG-Netea), Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation. Genes (Basel) 2023; 14:genes14020247. [PMID: 36833174 PMCID: PMC9956319 DOI: 10.3390/genes14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3' UTR region and twenty-nine in 5' UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3' UTR SNPs rs1447651774 and rs115170199 and the 5' UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5' UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3' and 5' UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases.
Collapse
|
7
|
Irfan M, Iqbal T, Hashmi S, Ghani U, Bhatti A. Insilico prediction and functional analysis of nonsynonymous SNPs in human CTLA4 gene. Sci Rep 2022; 12:20441. [PMID: 36443461 PMCID: PMC9705290 DOI: 10.1038/s41598-022-24699-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The CTLA4 receptor is an immune checkpoint involved in the downregulation of T cells. Polymorphisms in this gene have been found to be associated with different diseases like rheumatoid arthritis, autosomal dominant immune dysregulation syndrome, juvenile idiopathic arthritis and autoimmune Addison's disease. Therefore, the identification of polymorphisms that have an effect on the structure and function of CTLA4 gene is important. Here we identified the most damaging missense or non-synonymous SNPs (nsSNPs) that might be crucial for the structure and function of CTLA4 using different bioinformatics tools. These in silico tools included SIFT, PROVEAN, PhD-SNP, PolyPhen-2 followed by MutPred2, I-Mutant 2.0 and ConSurf. The protein structures were predicted using Phyre2 and I-TASSER, while the gene-gene interactions were predicted by GeneMANIA and STRING. Our study identified three damaging missense SNPs rs1553657429, rs1559591863 and rs778534474 in coding region of CTLA4 gene. Among these SNPs the rs1553657429 showed a loss of potential phosphorylation site and was found to be highly conserved. The prediction of gene-gene interaction showed the interaction of CTlA4 with other genes and its importance in different pathways. This investigation of damaging nsSNPs can be considered in future while studying CTLA4 related diseases and can be of great importance in precision medicine.
Collapse
Affiliation(s)
- Muhammad Irfan
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Talha Iqbal
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Sakina Hashmi
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Uzma Ghani
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| | - Attya Bhatti
- grid.412117.00000 0001 2234 2376Healthcare Biotechnology, National University of Science and Technology, Islamabad H-12, 44000 Pakistan
| |
Collapse
|