1
|
Modanwal S, Mulpuru V, Mishra A, Mishra N. Transcriptomic signatures of prostate cancer progression: a comprehensive RNA-seq study. 3 Biotech 2025; 15:135. [PMID: 40260408 PMCID: PMC12009259 DOI: 10.1007/s13205-025-04297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/03/2025] [Indexed: 04/23/2025] Open
Abstract
Transcriptomics has been entirely transformed by RNA-sequencing (RNA-seq) due to its high sensitivity, accuracy, and precision. This study analyzed RNA-seq data to identify potential biomarkers for prostate cancer (PCa), a serious health issue among aging men. Despite several existing studies, biomarkers that effectively detect PCa or its prognosis have yet to be entirely determined. The differentially expressed genes (DEGs) that are critical and clinically informative were identified in PCa patient samples that had been progression stage categorized into medium risk (MR) and high risk (HR). A total of 174 DEGs were found to be shared between MR and HR samples. Functional enrichment analysis revealed their involvement in crucial biological processes, such as p53 signaling, mitotic nuclear division, and inflammation. To further examine their interactions, a Protein-Protein Interaction (PPI) network was constructed, where key genes, such as KIF20A, TPX2, BUB1, BIRC5, BUB1B, and MKI67, were found in significant modules, hubs, and motifs. Several transcription factors, including STAT5B, MYC, and SOX5 controlled these genes. Heatmap analysis indicates that the expression of the six crucial genes (KIF20A, TPX2, BUB1, BIRC5, BUB1B, and MKI67) increases with progression from benign state to medium-risk and high-risk states. Additionally, a nomogram model was constructed to predict the prognostic value of these biomarkers. Among the studied genes, BIRC5, MKI67, and KIF20A are suggested as potential prognostic biomarkers, while NIFK and PPP1CC are suggested as new therapeutic targets. These findings indicate that these biomarkers show considerable promise in improving early detection and prognosis of PCa. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04297-3.
Collapse
Affiliation(s)
- Shristi Modanwal
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh 211012 India
| | - Viswajit Mulpuru
- Department of Bioinformatics, Vignan’s Foundation for Science, Technology, and Research, Guntur, 522213 India
| | - Ashutosh Mishra
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh 211012 India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh 211012 India
| |
Collapse
|
2
|
Panthong W, Pientong C, Nukpook T, Heawchaiyaphum C, Aromseree S, Ekalaksananan T. OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking. BIOLOGY 2024; 13:1089. [PMID: 39765756 PMCID: PMC11673211 DOI: 10.3390/biology13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS2 and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.
Collapse
Affiliation(s)
- Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
3
|
Letonja J, Petrovič D. A Review of MicroRNAs and lncRNAs in Atherosclerosis as Well as Some Major Inflammatory Conditions Affecting Atherosclerosis. Biomedicines 2024; 12:1322. [PMID: 38927529 PMCID: PMC11201627 DOI: 10.3390/biomedicines12061322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
It is generally accepted that atherosclerosis is a chronic inflammatory disease. The link between atherosclerosis and other inflammatory diseases such as psoriasis, type 2 diabetes mellitus (T2DM), and rheumatoid arthritis (RA) via metabolic, inflammatory, and immunoregulatory pathways is well established. The aim of our review was to summarize the associations between selected microRNAs (miRs) and long non-coding RNAs (lncRNAs) and atherosclerosis, psoriasis, T2DM, and RA. We reviewed the role of miR-146a, miR-210, miR-143, miR-223, miR-126, miR-21, miR-155, miR-145, miR-200, miR-133, miR-135, miR-221, miR-424, let-7, lncRNA-H19, lncRNA-MEG3, lncRNA-UCA1, and lncRNA-XIST in atherosclerosis and psoriasis, T2DM, and RA. Extracellular vesicles (EVs) are a method of intracellular signal transduction. Their function depends on surface expression, cargo, and the cell from which they originate. The majority of the studies that investigated lncRNAs and some miRs had relatively small sample sizes, which limits the generalizability of their findings and indicates the need for more research. Based on the studies reviewed, miR-146a, miR-155, miR-145, miR-200, miR-133, and lncRNA-H19 are the most promising potential biomarkers and, possibly, therapeutic targets for atherosclerosis as well as T2DM, RA, and psoriasis.
Collapse
Affiliation(s)
- Jernej Letonja
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia;
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. A bioinformatics approach to elucidate conserved genes and pathways in C. elegans as an animal model for cardiovascular research. Sci Rep 2024; 14:7471. [PMID: 38553458 PMCID: PMC10980734 DOI: 10.1038/s41598-024-56562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in CVD research. Caenorhabditis elegans, a nematode species, has emerged as a prominent experimental organism widely utilized in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilization for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Science for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Chirashree Ghosh
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Xiao L, Lin S, Zhan F. Identification of hub genes and transcription factors in patients with primary gout complicated with atherosclerosis. Sci Rep 2024; 14:3992. [PMID: 38368442 PMCID: PMC10874450 DOI: 10.1038/s41598-024-54581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Evidence shows that primary gout is prone to develop to atherosclerosis, but the mechanism of its occurrence is still not fully clarified. The aim of this study was to explore the molecular mechanism of the occurrence of this complication in gout. The gene expression profiles of primary gout and atherosclerosis were downloaded from the gene expression omnibus database. Overlapping differentially expressed genes (DEGs) between gout and atherosclerosis were identified. The biological roles of common DEGs were explored through enrichment analyses. Hub genes were identified using protein-protein interaction networks. The immune infiltrations of 28 types of immune cells in gout and control samples from GSE160170 were evaluated by the ssGSEA method. Transcription factors (TFs) were predicted using Transcriptional Regulatory Relationships Unraveled by Sentence Based Text Mining (TRRUST) database. A total of 168 overlapping DEGs were identified. Functional enrichment analyses indicated that DEGs were mostly enriched in chemokine signaling pathway, regulation of actin cytoskeleton, and TNF signaling pathway. CytoScape demonstrated 11 hub genes and two gene cluster modules. The immune infiltration analysis showed that the expression of DEGs in gout was significantly upregulated in activated CD4 T cells, gamma delta T cells, T follicular helper cell, CD56dim natural killer cells, and eosinophil. TRRUST predicted one TF, RUNX family transcription factor 1. Our study explored the pathogenesis of gout with atherosclerosis and discovered the immune infiltration of gout. These results may guide future experimental research and clinical transformation.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Rheumatology and immunology, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, China.
| | - Shudian Lin
- Department of Rheumatology and immunology, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Feng Zhan
- Department of Rheumatology and immunology, Hainan general hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
6
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. Conserved Cardiovascular Network: Bioinformatics Insights into Genes and Pathways for Establishing Caenorhabditis elegans as an Animal Model for Cardiovascular Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573256. [PMID: 38234826 PMCID: PMC10793405 DOI: 10.1101/2023.12.24.573256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in cardiovascular disease (CVD) research. Caenorhabditis elegans , a nematode species, has emerged as a prominent experimental organism widely utilised in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilisation for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signalling pathway, the FoxO signalling pathway, the MAPK signalling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
|
7
|
Mahla RS. Comment on: Genome-wide DNA methylation sequencing reveals epigenetic features and potential biomarkers of Sjögren syndrome. Int J Rheum Dis 2024; 27:e15033. [PMID: 38287546 DOI: 10.1111/1756-185x.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024]
Affiliation(s)
- Ranjeet Singh Mahla
- Medical Science Division, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Ding H, Mei X, Li L, Fang P, Guo T, Zhao J. RUNX1 Ameliorates Rheumatoid Arthritis Progression through Epigenetic Inhibition of LRRC15. Mol Cells 2023; 46:231-244. [PMID: 36625319 PMCID: PMC10086557 DOI: 10.14348/molcells.2023.2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 01/11/2023] Open
Abstract
Leucine-rich repeat containing 15 (LRRC15) has been identified as a contributing factor for cartilage damage in osteoarthritis; however, its involvement in rheumatoid arthritis (RA) and the underlying mechanisms have not been well characterized. The purpose of this study was to explore the function of LRRC15 in RA-associated fibroblast-like synoviocytes (RA-FLS) and in mice with collagen-induced arthritis (CIA) and to dissect the epigenetic mechanisms involved. LRRC15 was overexpressed in the synovial tissues of patients with RA, and LRRC15 overexpression was associated with increased proliferative, migratory, invasive, and angiogenic capacities of RA-FLS and accelerated release of pro-inflammatory cytokines. LRRC15 knockdown significantly inhibited synovial proliferation and reduced bone invasion and destruction in CIA mice. Runt-related transcription factor 1 (RUNX1) transcriptionally represses LRRC15 by binding to core-binding factor subunit beta (CBF-β). Overexpression of RUNX1 significantly inhibited the invasive phenotype of RA-FLS and suppressed the expression of proinflammatory cytokines. Conversely, the effects of RUNX1 were significantly reversed after overexpression of LRRC15 or inhibition of RUNX1-CBF-β interactions. Therefore, we demonstrated that RUNX1-mediated transcriptional repression of LRRC15 inhibited the development of RA, which may have therapeutic effects for RA patients.
Collapse
Affiliation(s)
- Hao Ding
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Xiaoliang Mei
- Department of Orthopedics, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Lintao Li
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Peng Fang
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Ting Guo
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|