1
|
Li Z, Qu Y, Lin M, Yu Y, Ma S. Application of nail analysis in human biomonitoring of toxic pollutants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125784. [PMID: 39900128 DOI: 10.1016/j.envpol.2025.125784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
Nail tissue, as a keratinized biomatrix, serves as a valuable indicator of chronic human exposure to toxic pollutants. The analysis of nail samples has emerged as a prominent method for human exposure assessment, primarily due to its non-invasive sampling procedure and ease of sample storage and transportation. This review examines recent applications of nail analysis in human biomonitoring of toxic organic compounds and heavy metals, along with the various pretreatment methods that have been developed. Studies of human nail samples have revealed distinctive patterns in toxic pollutant accumulation. Brominated flame retardants exhibit significant occupational exposure differences, with concentrations reaching 2.20 × 106 ng/g in manufacturing workers compared to 67 ng/g in the general population. Organophosphate esters demonstrate notable regional variations, as evidenced by Triphenyl phosphate concentrations of 19.6 ng/g in China versus 770 ng/g in the United States. Additionally, the detection of organic pollutant metabolites in nails provides direct evidence of internal exposure. The 5-14 months detection window characteristic of nail samples enables retrospective exposure analysis, highlighting the promising potential of nail analysis in human biomonitoring. Recent developments include the implementation of in situ analytical methods for rapid heavy metal detection in nail samples. However, a significant challenge remains in differentiating between internal and external sources of most compounds in nails, although the identification of metabolic biomarkers for certain pollutants can minimize external interference and better reflect actual body burden. Further research is required to elucidate the relationships between nail pollutant levels, environmental exposure, and health effects. While existing studies demonstrate the considerable potential of nail analysis in human biomonitoring of toxic pollutants, additional research is necessary to validate and fully realize its practical applications.
Collapse
Affiliation(s)
- Zhuowen Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yanji Qu
- Global Health Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
2
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241257365. [PMID: 38828044 PMCID: PMC11141224 DOI: 10.1177/11786302241257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Background Arsenic, a widely recognized and highly toxic carcinogen, is regarded as one of the most hazardous metalloids globally. However, the precise assessment of acute and chronic human exposure to arsenic and its contributing factors remains unclear in Ethiopia. Objective The primary goal of this study was to assess the levels of acute and chronic arsenic exposure, as well as the contributing factors, using urine and nail biomarkers. Methods A community-based analytical cross-sectional study design was employed for this study. Agilent 7900 series inductively coupled plasma mass spectrometry was used to measure the concentrations of arsenic in urine and nail samples. We performed a multiple linear regression analysis to assess the relationships between multiple predictors and outcome variables. Results The concentration of arsenic in the urine samples ranged from undetectable (<0.01) to 126.13, with a mean and median concentration of 16.02 and 13.5 μg/L, respectively. However, the mean and median concentration of arsenic in the nails was 1.01, ranging from undetectable (<0.01 μg/g) to 2.54 μg/g. Furthermore, Pearson's correlation coefficient analysis showed a significant positive correlation between arsenic concentrations in urine and nail samples (r = 0.432, P < .001). Also, a positive correlation was observed between urinary (r = 0.21, P = .007) and nail (r = 0.14, P = .044) arsenic concentrations and the arsenic concentration in groundwater. Groundwater sources and smoking cigarettes were significantly associated with acute arsenic exposure. In contrast, groundwater sources, cigarette smoking, and the frequency of showers were significantly associated with chronic arsenic exposure. Conclusions The study's findings unveiled the widespread occurrence of both acute and chronic arsenic exposure in the study area. Consequently, it is crucial to prioritize the residents in the study area and take further measures to prevent both acute and chronic arsenic exposure.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| |
Collapse
|
3
|
Shokoohi R, Khazaei M, Mostafaloo R, Khazaei S, Signes-Pastor AJ, Ghahramani E, Torkshavand Z. Systematic review and meta-analysis of arsenic concentration in drinking water sources of Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:155. [PMID: 38592550 DOI: 10.1007/s10653-024-01943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Recent studies have found arsenic contamination of drinking water in some parts of Iran, as in many other countries. Thus, a comprehensive systematic review is necessary to assess the distribution and concentration of arsenic in drinking water sources. For this purpose, articles published from the first identification until December 2023, were retrieved from various national and international databases. Of all the studies examined (11,726), 137 articles were selected for review based on their conceptual relationship to this survey. A review of the extracted studies presented that ICP methods (ICP-MS, ICP-OES, 56%) and atomic absorption spectrophotometry (AAS, 34.1%) were the two most commonly used techniques for the analysis of arsenic in water samples. The order of arsenic content in the defined study areas is descending, as follows: northwest ˃ southeast ˃ southwest ˃ northeast. A review of studies performed in Iran depicted that provinces such as Kurdistan, Azerbaijan, and Kerman have the highest arsenic concentrations in water resources. Accordingly, the maximum concentration of arsenic was reported in Rayen, Kerman, and ranged from < 0.5-25,000 µg/L. The primary cause of elevated arsenic levels in water resources appears to be geologic structure, including volcanic activity, biogeochemical processes, sulfur-bearing volcanic rocks, Jurassic shale, the spatial coincidence of arsenic anomalies in tube wells and springs, and, to some extent, mining activities. The findings of the presented survey indicate that it is essential to take serious measures at the national level to minimize the health risks of arsenic contamination from drinking water consumption.
Collapse
Affiliation(s)
- Reza Shokoohi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Khazaei
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roqiyeh Mostafaloo
- Department of Environmental Health Engineering, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Research Center for Health Sciences, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Antonio J Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Esmaeil Ghahramani
- Environmental Health Research Center, Research Institute for Health Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Torkshavand
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Suminda GGD, Min Y, Ha MW, Ghosh M, Lee DS, Son YO. In vitro and in vivo investigations on arsenic-induced cartilage degeneration in osteoarthritis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132570. [PMID: 37742380 DOI: 10.1016/j.jhazmat.2023.132570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Heavy metals found in the environment, including arsenic (As) pose significant risks to human health and present a risk factor for osteoarthritis (OA). This study researched the impact of As on cartilage degeneration by focusing on the role of As in causing OA in mice. We employed chemical inhibition and inductively coupled plasma mass spectrometry analyses to identify the effect of As on chondrocytes as well as studying its accumulation in organs after oral administration in mice. Additionally, the study examined the effect of intra-articular As treatment on the levels of crucial catabolic factors, namely Hif-2α (Epas1) and Zip8 (Slc39a8), during OA progression. Mice that were administered As orally in conjunction with surgically induced joint instability, had heightened cartilage destruction compared to wild-type mice. Quantitative analysis revealed a significant increase in Hif-2α and Zip8 mRNA expression (p = 0.0352,0.0004 respectively) and protein expression (p = 0.0101,0.008 respectively) post oral administration. Our findings illustrated the role of As in influencing crucial cellular functions that are triggered by reactive oxygen species. These events consequently activate the Akt/Hif-2α/NF-κB pathways, leading to disruptions in articular cartilage homeostasis. This study provides a comprehensive understanding of the impact of As on the development of osteoarthritis.
Collapse
Affiliation(s)
| | - Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Min Woo Ha
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences Jeju National University, Jeju-si 63243, Republic of Korea; Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalin-gam Academy of Research and Educational, Krishnankoil 626126, India
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences Jeju National University, Jeju-si 63243, Republic of Korea; Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
5
|
Ray R, Rakesh A, Singh S, Madhyastha H, Mani NK. Hair and Nail-On-Chip for Bioinspired Microfluidic Device Fabrication and Biomarker Detection. Crit Rev Anal Chem 2023:1-27. [PMID: 38133962 DOI: 10.1080/10408347.2023.2291825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The advent of biosensors has tremendously increased our potential of identifying and solving important problems in various domains, ranging from food safety and environmental analysis, to healthcare and medicine. However, one of the most prominent drawbacks of these technologies, especially in the biomedical field, is to employ conventional samples, such as blood, urine, tissue extracts and other body fluids for analysis, which suffer from the drawbacks of invasiveness, discomfort, and high costs encountered in transportation and storage, thereby hindering these products to be applied for point-of-care testing that has garnered substantial attention in recent years. Therefore, through this review, we emphasize for the first time, the applications of switching over to noninvasive sampling techniques involving hair and nails that not only circumvent most of the aforementioned limitations, but also serve as interesting alternatives in understanding the human physiology involving minimal costs, equipment and human interference when combined with rapidly advancing technologies, such as microfluidics and organ-on-a-chip to achieve miniaturization on an unprecedented scale. The coalescence between these two fields has not only led to the fabrication of novel microdevices involving hair and nails, but also function as robust biosensors for the detection of biomarkers, chemicals, metabolites and nucleic acids through noninvasive sampling. Finally, we have also elucidated a plethora of futuristic innovations that could be incorporated in such devices, such as expanding their applications in nail and hair-based drug delivery, their potential in serving as next-generation wearable sensors and integrating these devices with machine-learning for enhanced automation and decentralization.
Collapse
Affiliation(s)
- Rohitraj Ray
- Department of Bioengineering (BE), Indian Institute of Science Bangalore, Bengaluru, Karnataka, India
| | - Amith Rakesh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sheetal Singh
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|