1
|
Mao ZD, Liu ZG, Qian Y, Shi YJ, Zhou LZ, Zhang Q, Qi CJ. RNA Sequencing and Bioinformatics Analysis to Reveal Potential Biomarkers in Patients with Combined Allergic Rhinitis and Asthma Syndrome. J Inflamm Res 2023; 16:6211-6225. [PMID: 38145010 PMCID: PMC10748568 DOI: 10.2147/jir.s438758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent clinical or subclinical allergic symptom of diseases of the upper and lower respiratory tract. This study is the first to explore the expression profiles of mRNA, lncRNA, and circRNA in CARAS using RNA sequencing, which may provide insight into the mechanisms underlying CARAS. Material and Methods Whole blood samples from nine participants (three CARAS patients, three AR patients, and three normal control participants) were subjected to perform RNA sequencing, followed by identification of differentially expressed lncRNAs (DElncRNAs), circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). Then, lncRNA/circRNA-mRNA regulatory pairs were constructed, followed by functional analysis, immune infiltration analysis, drug prediction, and expression validation with RT-qPCR and ELISA. Results The results showed that 61 DEmRNAs, 23 DElncRNAs and 3 DEcircRNAs may be related to the occurrence and development of CARAS. KRT8 may be implicated in the development of AR into CARAS. Three immunity-related mRNAs (IDO1, CYSLTR2, and TEC) and two hypoxia-related mRNAs (TKTL1 and VLDLR) were associated with the occurrence and development of CARAS. TEC may be considered a drug target for Dasatinib in treating CARAS. Several lncRNA/circRNA-mRNA regulatory pairs were identified in CARAS, including LINC00452/MIR4280HG/hsa_circ_0007272/hsa_circ_0070934-CLC, HEATR6-DT/LINC00639/LINC01783/hsa_circ_0008903-TEC, RP11-71L14.3-IDO1/SMPD3, RP11-178F10.2-IDO1/HRH4, and hsa_circ_0008903-CYSLTR2, which may indicate potential regulatory effects of lncRNAs/circRNAs in CARAS. Dysregulated levels of immune cell infiltration may be closely related to CARAS. Conclusion The regulating effect of lncRNA/circRNA-immunity/hypoxia-related mRNA regulatory pairs may be involved in the occurrence and development of CARAS.
Collapse
Affiliation(s)
- Zheng-Dao Mao
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Zhi-Guang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yu-Jia Shi
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Lian-Zheng Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Chun-Jian Qi
- Central Laboratory, Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
2
|
Jia W, Liu X, Zhang Z. Role of TOP2A and CDC6 in liver cancer. Medicine (Baltimore) 2023; 102:e35604. [PMID: 37861550 PMCID: PMC10589547 DOI: 10.1097/md.0000000000035604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality worldwide, which is characterized by aggressive growth and metastasis. However, the relationship between TOP2A and CDC6 and HCC remains unclear. GSE121248 and GSE101728 profiles for liver cancer were downloaded from the gene expression omnibus database generated using GPL21047and GPL570. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis. Gene expression heat map was drawn and survival analysis was performed. Comparative toxicogenomics database analysis were performed to find the disease most related to the core gene. TargetScan was used to screen miRNAs regulating central DEGs. 885 DEGs were identified. According to gene ontology analysis, they were mainly enriched in organic acid metabolism process, metabolic pathway, p53 signal pathway and PPAR signal pathway. The enrichment items are similar to the GOKEGG enrichment items of differentially expressed genes, mainly in the process of organic acid metabolism, p53 signal pathway and PPAR signal pathway. In the enrichment project of metascape, gene ontology has PIDPLK1 pathway, mitotic cell cycle, tumor retinoblastoma gene. The construction and analysis of protein-protein interaction network obtained 10 core genes (TOP2A, CDK1, ASPM, RACGAP1, ZWINT, CDC6, AURKA, NCAPG, BUB1B, CCNB1), and found that these core genes were highly expressed in tumor tissues and low in normal tissues. Comparative toxicogenomics database analysis showed that 10 genes (TOP2A, CDK1, ASPM, RACGAP1, ZWINT, CDC6, AURKA, NCAPG, BUB1B, CCNB1) were related to necrosis, inflammation, HCC, liver cirrhosis, and adenoid cystic carcinoma. TOP2A and CDC6 are highly expressed in liver cancer, which may become molecular targets for early diagnosis and precise treatment.
Collapse
Affiliation(s)
- Wei Jia
- Department of Digestive, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Badachu Xixia Village, Shijingshan District, Beijing, P.R. China
| | - Xiang Liu
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhilei Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
3
|
Cui Y, Wu Y, Zhu Y, Liu W, Huang L, Hong Z, Zhang M, Zheng X, Sun G. The possible molecular mechanism underlying the involvement of the variable shear factor QKI in the epithelial-mesenchymal transformation of oesophageal cancer. PLoS One 2023; 18:e0288403. [PMID: 37428781 DOI: 10.1371/journal.pone.0288403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Based on the GEO, TCGA and GTEx databases, we reveal the possible molecular mechanism of the variable shear factor QKI in epithelial mesenchymal transformation (EMT) of oesophageal cancer. METHODS Based on the TCGA and GTEx databases, the differential expression of the variable shear factor QKI in oesophageal cancer samples was analysed, and functional enrichment analysis of QKI was performed based on the TCGA-ESCA dataset. The percent-spliced in (PSI) data of oesophageal cancer samples were downloaded from the TCGASpliceSeq database, and the genes and variable splicing types that were significantly related to the expression of the variable splicing factor QKI were screened out. We further identified the significantly upregulated circRNAs and their corresponding coding genes in oesophageal cancer, screened the EMT-related genes that were significantly positively correlated with QKI expression, predicted the circRNA-miRNA binding relationship through the circBank database, predicted the miRNA-mRNA binding relationship through the TargetScan database, and finally obtained the circRNA-miRNA-mRNA network through which QKI promoted the EMT process. RESULTS Compared with normal control tissue, QKI expression was significantly upregulated in tumour tissue samples of oesophageal cancer patients. High expression of QKI may promote the EMT process in oesophageal cancer. QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation by regulating the variable shear of BACH1 and PTK2. In oesophageal cancer, QKI may promote the production of the above two circRNAs by regulating variable splicing, and these circRNAs further competitively bind miRNAs to relieve the targeted inhibition of IL-11, MFAP2, MMP10, and MMP1 and finally promote the EMT process. CONCLUSION Variable shear factor QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation, and downstream related miRNAs can relieve the targeted inhibition of EMT-related genes (IL11, MFAP2, MMP10, MMP1) and promote the occurrence and development of oesophageal cancer, providing a new theoretical basis for screening prognostic markers of oesophageal cancer patients.
Collapse
Affiliation(s)
- Yishuang Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Yanan Wu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Yingze Zhu
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wei Liu
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Lanxiang Huang
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Ziqian Hong
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Mengshi Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Xuan Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
| | - Guogui Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
- Department of Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, Tangshan, Hebei Province, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei Province, China
- Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
4
|
Muftuoglu C, Mert U, Akagunduz OO, Tavlayan E, Al-Omar A, Asadi M, Caner A. Profiling of circRNA expressions in radiation-treated head and neck cancer cells and the potential role of circPVT1. Arch Oral Biol 2023; 150:105690. [PMID: 37027893 DOI: 10.1016/j.archoralbio.2023.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Radiotherapy is an indispensable treatment modality for head and neck cancers (HNCs). Due to their stable structure, circular RNAs (circRNA) have been implicated as potential biomarkers for clinical use in cancers. The purpose of this study was profiling the circRNA in radiation-treated head and neck cancer cells to identify potential differentially expressed circRNAs. DESIGN The effects of radiation on the expression level of circRNAs were investigated in HNCs cells, compared to healthy cell lines. To predict the potential role of circRNAs in HNC patients, tissue expression levels, survival analyses of circRNAs, and circRNA-miRNA network were evaluated using TCGA/CPTAC datasets. Based on expression level in irradiated cells, circPVT1 (plasmacytoma variant translocation 1) was further investigated by sequence analysis. RESULTS The study revealed the characterization of differentially expressed circRNAs in cancer cells and that irradiation made significant changes in the expression of circRNAs. These findings suggest that certain circRNAs, especially circPVT1, may be potential biomarkers to monitor radiotherapy effects in patients with HNCs. CONCLUSIONS CircRNAs may be promising molecules for improving and understanding radiotherapy efficacy in HNCs.
Collapse
Affiliation(s)
- Can Muftuoglu
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey; Atatürk Health Care Vocational School, Ege University, Izmir, Turkey
| | | | - Emin Tavlayan
- Department of Radiation Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ahmed Al-Omar
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Milad Asadi
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Ayse Caner
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey; Translational Pulmonary Research Center (EGESAM), Ege University, Izmir, Turkey; Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
5
|
Jayarathna DK, Rentería ME, Batra J, Gandhi NS. Integrative competing endogenous RNA network analyses identify novel lncRNA and genes implicated in metastatic breast cancer. Sci Rep 2023; 13:2423. [PMID: 36765262 PMCID: PMC9918521 DOI: 10.1038/s41598-023-29585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) have gained attention in cancer research owing to their involvement in microRNA-mediated gene regulation. Previous studies have identified ceRNA networks of individual cancers. Nevertheless, none of these studies has investigated different cancer stages. We identify stage-specific ceRNAs in breast cancer using the cancer genome atlas data. Moreover, we investigate the molecular functions and prognostic ability of ceRNAs involved in stage I-IV networks. We identified differentially expressed candidate ceRNAs using edgeR and limma R packages. A three-step analysis was used to identify statistically significant ceRNAs of each stage. Survival analysis and functional enrichment analysis were conducted to identify molecular functions and prognostic ability. We found five genes and one long non-coding RNA unique to the stage IV ceRNA network. These genes have been described in previous breast cancer studies. Genes acted as ceRNAs are enriched in cancer-associated pathways. Two, three, and three microRNAs from stages I, II, and III were prognostic from the Kaplan-Meier survival analysis. Our results reveal a set of unique ceRNAs in metastatic breast cancer. Further experimental work is required to evaluate their role in metastasis. Moreover, identifying stage-specific ceRNAs will improve the understanding of personalised therapeutics in breast cancer.
Collapse
Affiliation(s)
- Dulari K Jayarathna
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Neha S Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
6
|
Xu W, Zhang Z, Yao L, Xue B, Xi H, Wang X, Sun S. Exploration of Shared Gene Signatures and Molecular Mechanisms Between Periodontitis and Nonalcoholic Fatty Liver Disease. Front Genet 2022; 13:939751. [PMID: 35836570 PMCID: PMC9273910 DOI: 10.3389/fgene.2022.939751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Periodontitis is associated with periodontal tissue damage and teeth loss. Nonalcoholic fatty liver disease (NAFLD) has an intimate relationship with periodontitis. Nevertheless, interacted mechanisms between them have not been clear. This study was intended for the exploration of shared gene signatures and latent therapeutic targets in periodontitis and NAFLD. Methods: Microarray datasets of periodontitis and NAFLD were obtained from the Gene Expression Omnibus (GEO) database. The weighted gene co-expression network analysis (WGCNA) was utilized for the acquisition of modules bound up with NAFLD and periodontitis. We used ClueGO to carry out biological analysis on shared genes to search their latent effects in NAFLD and periodontitis. Another cohort composed of differential gene analysis verified the results. The common microRNAs (miRNAs) in NAFLD and periodontitis were acquired in the light of the Human microRNA Disease Database (HMDD). According to miRTarbase, miRDB, and Targetscan databases, latent target genes of miRNAs were forecasted. Finally, the miRNAs–mRNAs network was designed. Results: Significant modules with periodontitis and NAFLD were obtained via WGCNA. GO enrichment analysis with GlueGo indicated that damaged migration of dendritic cells (DCs) might be a common pathophysiologic feature of NAFLD and periodontitis. In addition, we revealed common genes in NAFLD and periodontitis, including IGK, IGLJ3, IGHM, MME, SELL, ENPP2, VCAN, LCP1, IGHD, FCGR2C, ALOX5AP, IGJ, MMP9, FABP4, IL32, HBB, FMO1, ALPK2, PLA2G7, MNDA, HLA-DRA, and SLC16A7. The results of differential analysis in another cohort were highly accordant with the findings of WGCNA. We established a comorbidity model to explain the underlying mechanism of NAFLD secondary to periodontitis. Finally, the analysis of miRNA pointed out that hsa-mir-125b-5p, hsa-mir-17-5p, and hsa-mir-21-5p might provide potential therapeutic targets. Conclusion: Our study initially established a comorbidity model to explain the underlying mechanism of NAFLD secondary to periodontitis, found that damaged migration of DCs might be a common pathophysiological feature of NAFLD and periodontitis, and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Wanqiu Xu
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Ward 7, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yao
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Xue
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hualei Xi
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Dentistry, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiumei Wang, ; Shibo Sun,
| | - Shibo Sun
- Ward 7, Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiumei Wang, ; Shibo Sun,
| |
Collapse
|