1
|
Li Y, Ma J, Li X, Huang C. Unveiling Key Genes Modulating Retinal Cell Survival and Autophagy in Glaucoma. Mol Biotechnol 2024:10.1007/s12033-024-01341-0. [PMID: 39695008 DOI: 10.1007/s12033-024-01341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness, with rising incidence globally. Effective treatment is challenging due to limited understanding of the disease mechanisms. Growth factor activity is crucial in glaucoma, with potential to reduce retinal ganglion cell (RGC) apoptosis and slow disease progression. This study aims to identify and analyze differentially expressed genes (DEGs) involved in growth factor activity to uncover new therapeutic targets. We analyzed the GSE9944 dataset from the Gene Expression Omnibus (GEO) to identify DEGs associated with glaucoma, resulting in 94 DEGs, including 29 down-regulated and 65 up-regulated genes. Functional enrichment and protein-protein interaction (PPI) network analyses were conducted using bioinformatics tools, highlighting the roles of Bone Morphogenetic Protein 1 (BMP1), Pleiotrophin (PTN), and f fibroblast Growth Factor 7 (FGF7). Aberrant expression vectors for these genes were transfected into RGCs derived from a glaucoma model to evaluate their impact on cell viability, apoptosis, and autophagy. Bioinformatics analysis of the GSE9944 dataset identified 94 DEGs, with 29 down-regulated and 65 up-regulated genes. Functional enrichment analysis revealed that these DEGs were involved in pathways related to growth factor activity, apoptosis, and autophagy, processes highly relevant to glaucoma pathogenesis. PPI network analysis identified BMP1, PTN, and FGF7 as central hub genes involved in extracellular matrix organization and growth factor signaling. In experimental validation using RGCs, we found that up-regulation of BMP1 significantly enhanced RGC viability and reduced apoptosis. Conversely, silencing PTN and FGF7 provided protective effects, enhancing RGC survival. Silencing BMP1 and upregulating PTN and FGF7 led to increased RGC apoptosis. Additionally, BMP1 was found to inhibit autophagy in RGCs, whereas PTN and FGF7 promoted autophagic activity, suggesting differential regulatory roles in glaucoma pathogenesis. Overall, BMP1, PTN, and FGF7 play critical roles in the regulation of RGC activity and autophagy in glaucoma, making them promising molecular targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Yingmei Li
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, 250000, Shandong, China
| | - Jing Ma
- Department of Operating Room, The Second People's Hospital of Jinan, Jinan, 250000, Shandong, China
| | - Xin Li
- Department of Medical Administration, The First Affiliated Hospital of the Army Medical University, Chongqing, 400038, China
| | - Chao Huang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, 250000, Shandong, China.
| |
Collapse
|
2
|
Adewale AT, Sharma S, Mouawad JE, Nguyen XX, Bradshaw AD, Feghali-Bostwick C. IGF-II regulates lysyl oxidase propeptide and mediates its effects in part via basic helix-loop-helix E40. Matrix Biol 2024; 132:24-33. [PMID: 38852924 PMCID: PMC11329355 DOI: 10.1016/j.matbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.
Collapse
Affiliation(s)
- Adegboyega Timothy Adewale
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Shailza Sharma
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| | - Joe E Mouawad
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Xinh-Xinh Nguyen
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| |
Collapse
|
3
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
4
|
Vadon-Le Goff S, Tessier A, Napoli M, Dieryckx C, Bauer J, Dussoyer M, Lagoutte P, Peyronnel C, Essayan L, Kleiser S, Tueni N, Bettler E, Mariano N, Errazuriz-Cerda E, Fruchart Gaillard C, Ruggiero F, Becker-Pauly C, Allain JM, Bruckner-Tuderman L, Nyström A, Moali C. Identification of PCPE-2 as the endogenous specific inhibitor of human BMP-1/tolloid-like proteinases. Nat Commun 2023; 14:8020. [PMID: 38049428 PMCID: PMC10696041 DOI: 10.1038/s41467-023-43401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-β superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.
Collapse
Affiliation(s)
- Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Agnès Tessier
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Manon Napoli
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Cindy Dieryckx
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Julien Bauer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Mélissa Dussoyer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Priscillia Lagoutte
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Célian Peyronnel
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Lucie Essayan
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Svenja Kleiser
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Nicole Tueni
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Emmanuel Bettler
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Natacha Mariano
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Elisabeth Errazuriz-Cerda
- University of Lyon, Centre d'Imagerie Quantitative Lyon-Est (CIQLE), SFR Santé-Lyon Est, 69373, Lyon, France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Florence Ruggiero
- ENS Lyon, CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), 69007, Lyon, France
| | - Christoph Becker-Pauly
- University of Kiel, Biochemical Institute, Unit for Degradomics of the Protease Web, Kiel, Germany
| | - Jean-Marc Allain
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Catherine Moali
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France.
| |
Collapse
|
5
|
Wu X, Zhang D, Qiao X, Zhang L, Cai X, Ji J, Ma JA, Zhao Y, Belperio JA, Boström KI, Yao Y. Regulating the cell shift of endothelial cell-like myofibroblasts in pulmonary fibrosis. Eur Respir J 2023; 61:2201799. [PMID: 36758986 PMCID: PMC10249020 DOI: 10.1183/13993003.01799-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pulmonary fibrosis is a common and severe fibrotic lung disease with high morbidity and mortality. Recent studies have reported a large number of unwanted myofibroblasts appearing in pulmonary fibrosis, and shown that the sustained activation of myofibroblasts is essential for unremitting interstitial fibrogenesis. However, the origin of these myofibroblasts remains poorly understood. Here, we create new mouse models of pulmonary fibrosis and identify a previously unknown population of endothelial cell (EC)-like myofibroblasts in normal lung tissue. We show that these EC-like myofibroblasts significantly contribute myofibroblasts to pulmonary fibrosis, which is confirmed by single-cell RNA sequencing of human pulmonary fibrosis. Using the transcriptional profiles, we identified a small molecule that redirects the differentiation of EC-like myofibroblasts and reduces pulmonary fibrosis in our mouse models. Our study reveals the mechanistic underpinnings of the differentiation of EC-like myofibroblasts in pulmonary fibrosis and may provide new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Daoqin Zhang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- These authors contributed equally to this work
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jocelyn A Ma
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, Clinical Immunology, and Allergy, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
6
|
An Analysis of BMP1 Associated with m6A Modification and Immune Infiltration in Pancancer. DISEASE MARKERS 2022; 2022:7899961. [PMID: 36267461 PMCID: PMC9578879 DOI: 10.1155/2022/7899961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Background. This research explores the underlying link between diagnosis and therapy between bone morphogenetic protein 1 (BMP1) and various cancers. Methods. Three immunotherapeutic cohorts, by the composition of IMvigor210, GSE35640, and GSE78220 were obtained from previously published articles and the Gene Expression Omnibus database. The different expressions of BMP1 in various clinical parameters were conducted, and prognostic analysis was executed utilizing Cox proportional hazard regression and Gene Expression Profiling Interactive Analysis. Moreover, the correlation between BMP1 and tumor microenvironment was analyzed using ESTIMATE and CIBERSORT algorithms. Tumor mutational burden and microsatellite instability were also included. The correlation between m6A modification and the gene expression level was analyzed using Tumor IMmune Estimation Resource, the University of Alabama at Birmingham Cancer data analysis portal. Gene Set Cancer Analysis analyzed the correlation of BMP1 expression level with copy number variations and methylation. Furthermore, the correlation between BMP1 and therapeutic response after antineoplastic drug use was illustrated for further discussion. Results. BMP1 expression had significant differences in 14 cancers. It presented an intimate relationship with immune-relevant biomarkers. A variation analysis indicated that BMP1 had a significant association with immunotherapeutic response. The expression level of BMP1 was closely associated with insulin-like growth factor binding protein 3, an m6A modification relative gene. Except for a few cancer types, methylation negatively correlated with BMP1, and copy number variations positively correlated with BMP1. Notably, low BMP1 expression was connected with immunotherapeutic response in the cohorts, and its expression was related to increased sectional sensitivity of drugs. Conclusion. BMP1 may serve as a potential biomarker for prognostic prediction and immunologic infiltration in diversified cancers, providing a new thought approach for oncotherapy.
Collapse
|