1
|
Antonioni A, Cellini N, Baroni A, Fregna G, Lamberti N, Koch G, Manfredini F, Straudi S. Characterizing practice-dependent motor learning after a stroke. Neurol Sci 2025; 46:1245-1255. [PMID: 39503951 PMCID: PMC11828819 DOI: 10.1007/s10072-024-07815-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/08/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND After stroke, patients must learn to use residual motor function correctly. Consistently, motor learning is crucial in stroke motor recovery. We assessed motor performance, practice-dependent on-line motor learning, and factors potentially affecting them in stroke patients. METHODS This is a cross-sectional observational study. Twenty-six patients with first brain stroke leading to upper limb motor deficit in the subacute or chronic timeframe were enrolled. They performed a Finger Tapping Task (FTT) with both the affected and unaffected limbs. We assessed how patients learn to perform motor tasks despite the motor deficit and the differences in performance between the unaffected and affected limbs. Furthermore, by randomizing the order, we evaluated the possible inter-limb transfer of motor learning (i.e. transfer of a motor skill learned in one limb to the opposite one). Moreover, sleep, attention, anxiety, and depression were assessed through specific tests and questionnaires. RESULTS Improved FTT accuracy and completed sequences for the affected limb were observed, even if lower than for the unaffected one. Furthermore, when patients initially performed the FTT with the unaffected limb, they showed higher accuracy in subsequent task completion with the affected limb than subjects who started with the affected limb. Only anxiety and attentional abilities showed significant correlations with motor performance. CONCLUSIONS This work provides relevant insights into motor learning in stroke. Practice-dependent on-line motor learning is preserved in stroke survivors, and an inter-limb transfer effect can be observed. Attentional abilities and anxiety can affect learning after stroke, even if the effect of other factors cannot be excluded.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, 44121, Italy
| | - Nicola Cellini
- Department of General Psychology, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Andrea Baroni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, 44124, Italy
| | - Giulia Fregna
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, 44121, Italy
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, 44121, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome, 00179, Italy
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, 44124, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, Ferrara, Ferrara, 44121, Italy.
- Department of Neuroscience, Ferrara University Hospital, Ferrara, 44124, Italy.
| |
Collapse
|
2
|
Truong C, Papaxanthis C, Ruffino C. Unraveling the time-of-day influences on motor consolidation through the motor-declarative memory conflict. Sci Rep 2024; 14:22195. [PMID: 39333514 PMCID: PMC11437201 DOI: 10.1038/s41598-024-69336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
Competition between motor and declarative memory systems, both involved simultaneously in motor learning, has been shown to reduce motor consolidation. Here, we investigated this conflict during the learning of a sequential finger-tapping task (SFTT) scheduled for either the morning or the afternoon. Sixty participants, divided into four groups, trained on SFTT at either 10 a.m. or 3 p.m., and retested five hours later. To disrupt the conflict between the two memories, two groups underwent declarative learning immediately after SFTT training, involving word list training (G10DL and G3DL), while the two other groups (G10CTR and G3CTR) experienced no additional learning. The results revealed that after morning training without additional learning (C10CTR), skill consolidation deteriorated, while the addition of declarative learning (G10DL) significantly attenuated this decay, stabilizing consolidation. Afternoon training showed skill stabilization for both groups (G3CTR and G3DL). These results suggest that weaker consolidation after morning training may be due to an important competition between motor and declarative memories within the same motor task.
Collapse
Affiliation(s)
- Charlène Truong
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, Campus Universitaire, BP 27877, 21000, Dijon, France.
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, Campus Universitaire, BP 27877, 21000, Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, 21000, Dijon, France
| | - Célia Ruffino
- EA4660, C3S Laboratory, C3S Culture Sport Health Society, Université de Bourgogne Franche-Comté, UPFR Sports, 25000, Besançon, France
| |
Collapse
|
3
|
Van Roy A, Albouy G, Burns RD, King BR. Children exhibit a developmental advantage in the offline processing of a learned motor sequence. COMMUNICATIONS PSYCHOLOGY 2024; 2:30. [PMID: 39242845 PMCID: PMC11332225 DOI: 10.1038/s44271-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/20/2024] [Indexed: 09/09/2024]
Abstract
Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory. That is, young adults exhibit optimal performance, children are conceptualized as developing systems progressing towards this ideal state, and older adulthood is characterized by performance decrements. However, not all behaviors follow this trajectory, as there are instances in which children outperform young adults. Here, we acquired data from 7-35 and >55 year-old participants and assessed potential developmental advantages in motor sequence learning and memory consolidation. Results revealed no credible evidence for differences in initial learning dynamics among age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to adolescents, young adults and older adults. Interestingly, children demonstrated the greatest performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory consolidation. These results suggest that children exhibit an advantage in the offline processing of recently learned motor sequences.
Collapse
Affiliation(s)
- Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Geneviève Albouy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ryan D Burns
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Maaravi-Hesseg R, Cohen S, Karni A. Sequence-specific delayed gains in motor fluency evolve after movement observation training in the absence of early sleep. Sci Rep 2024; 14:4024. [PMID: 38369529 PMCID: PMC10874966 DOI: 10.1038/s41598-024-53004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Following physical practice, delayed, consolidation-phase, gains in the performance of the trained finger-to-thumb opposition sequence (FOS) can be expressed, in young adults, only after a sleep interval is afforded. These delayed gains are order-of-movements specific. However, in several perceptual learning tasks, time post-learning, rather than an interval of sleep, may suffice for the expression of delayed performance gains. Here we tested whether the affordance of a sleep interval is necessary for the expression of delayed performance gains after FOS training by repeated observation. Participants were trained by observing videos displaying a left hand repeatedly performing a 5-element FOS. To assess post-session observation-related learning and delayed gains participants were tested in performing the observed (trained) and an unobserved (new, the 5-elements mirror-reversed) FOS sequences. Repeated observation of a FOS conferred no advantage to its performance, compared to the unobserved FOS, immediately after practice. However, a clear advantage for the observed FOS emerged by 12 h post-training, irrespective of whether this interval included sleep or not; the largest gains appeared by 24 h post-training. These results indicate that time-dependent, offline consolidation processes take place after observation training even in the absence of sleep; akin to perceptual learning rather than physical FOS practice.
Collapse
Affiliation(s)
- Rinatia Maaravi-Hesseg
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, IL, Israel.
- E. J. Safra Brain Research Centre for the Study of Learning Disabilities, University of Haifa, 3498838, Haifa, IL, Israel.
| | - Sigal Cohen
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, IL, Israel
| | - Avi Karni
- Sagol Department of Neurobiology, University of Haifa, 3498838, Haifa, IL, Israel
- E. J. Safra Brain Research Centre for the Study of Learning Disabilities, University of Haifa, 3498838, Haifa, IL, Israel
| |
Collapse
|
5
|
Temporiti F, Galbiati E, Bianchi F, Bianchi AM, Galli M, Gatti R. Early sleep after action observation plus motor imagery improves gait and balance abilities in older adults. Sci Rep 2024; 14:3179. [PMID: 38326504 PMCID: PMC10850554 DOI: 10.1038/s41598-024-53664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Action observation plus motor imagery (AOMI) is a rehabilitative approach to improve gait and balance performance. However, limited benefits have been reported in older adults. Early sleep after motor practice represents a strategy to enhance the consolidation of trained skills. Here, we investigated the effects of AOMI followed by early sleep on gait and balance performance in older adults. Forty-five older adults (mean age: 70.4 ± 5.2 years) were randomized into three groups performing a 3-week training. Specifically, AOMI-sleep and AOMI-control groups underwent observation and motor imagery of gait and balance tasks between 8:00 and 10:00 p.m. or between 8:00 and 10:00 a.m. respectively, whereas Control group observed landscape video-clips. Participants were assessed for gait performance, static and dynamic balance and fear of falling before and after training and at 1-month follow-up. The results revealed that early sleep after AOMI training sessions improved gait and balance abilities in older adults compared to AOMI-control and Control groups. Furthermore, these benefits were retained at 1-month after the training end. These findings suggested that early sleep after AOMI may represent a safe and easy-applicable intervention to minimize the functional decay in older adults.
Collapse
Affiliation(s)
- Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy.
| | - Elena Galbiati
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Francesco Bianchi
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Manuela Galli
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| |
Collapse
|
6
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
7
|
Truong C, Ruffino C, Gaveau J, White O, Hilt PM, Papaxanthis C. Time of day and sleep effects on motor acquisition and consolidation. NPJ SCIENCE OF LEARNING 2023; 8:30. [PMID: 37658041 PMCID: PMC10474136 DOI: 10.1038/s41539-023-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/17/2023] [Indexed: 09/03/2023]
Abstract
We investigated the influence of the time-of-day and sleep on skill acquisition (i.e., skill improvement immediately after a training-session) and consolidation (i.e., skill retention after a time interval including sleep). Three groups were trained at 10 a.m. (G10am), 3 p.m. (G3pm), or 8 p.m. (G8pm) on a finger-tapping task. We recorded the skill (i.e., the ratio between movement duration and accuracy) before and immediately after the training to evaluate acquisition, and after 24 h to measure consolidation. We did not observe any difference in acquisition according to the time of the day. Interestingly, we found a performance improvement 24 h after the evening training (G8pm), while the morning (G10am) and the afternoon (G3pm) groups deteriorated and stabilized their performance, respectively. Furthermore, two control experiments (G8awake and G8sleep) supported the idea that a night of sleep contributes to the skill consolidation of the evening group. These results show a consolidation when the training is carried out in the evening, close to sleep, and forgetting when the training is carried out in the morning, away from sleep. This finding may have an important impact on the planning of training programs in sports, clinical, or experimental domains.
Collapse
Affiliation(s)
- Charlène Truong
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- EA4660, C3S Laboratory, C3S Culture Sport Health Society, Université de Bourgogne Franche-Comté, UPFR Sports, 25000, Besançon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Pauline M Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, F-21000, Dijon, France
| |
Collapse
|
8
|
Iester C, Biggio M, Cutini S, Brigadoi S, Papaxanthis C, Brichetto G, Bove M, Bonzano L. Time-of-day influences resting-state functional cortical connectivity. Front Neurosci 2023; 17:1192674. [PMID: 37325041 PMCID: PMC10264597 DOI: 10.3389/fnins.2023.1192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Time-of-day is rarely considered during experimental protocols investigating motor behavior and neural activity. The goal of this work was to investigate differences in functional cortical connectivity at rest linked to the time of the day using functional Near-Infrared Spectroscopy (fNIRS). Since resting-state brain is shown to be a succession of cognitive, emotional, perceptual, and motor processes that can be both conscious and nonconscious, we studied self-generated thought with the goal to help in understanding brain dynamics. We used the New-York Cognition Questionnaire (NYC-Q) for retrospective introspection to explore a possible relationship between the ongoing experience and the brain at resting-state to gather information about the overall ongoing experience of subjects. We found differences in resting-state functional connectivity in the inter-hemispheric parietal cortices, which was significantly greater in the morning than in the afternoon, whilst the intra-hemispheric fronto-parietal functional connectivity was significantly greater in the afternoon than in the morning. When we administered the NYC-Q we found that the score of the question 27 ("during RS acquisition my thoughts were like a television program or film") was significantly greater in the afternoon with respect to the morning. High scores in question 27 point to a form of thought based on imagery. It is conceivable to think that the unique relationship found between NYC-Q question 27 and the fronto-parietal functional connectivity might be related to a mental imagery process during resting-state in the afternoon.
Collapse
Affiliation(s)
- Costanza Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Sabrina Brigadoi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Giampaolo Brichetto
- Italian Multiple Sclerosis Foundation, Scientific Research Area, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
9
|
Hatchi V, Guillot A, Robin N. Revisiting Motor Imagery Guidelines in a Tropical Climate: The Time-of-Day Effect. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105855. [PMID: 37239581 DOI: 10.3390/ijerph20105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
(1) Background: Motor imagery (MI) is relevantly used to improve motor performance and promote rehabilitation. As MI ability and vividness can be affected by circadian modulation, it has been proposed that MI should ideally be performed between 2 p.m. and 8 p.m. Whether such a recommendation remains effective in a hot and humid environment, such as a tropical climate, remains unknown. (2) Methods: A total of 35 acclimatized participants completed a MI questionnaire and a mental chronometry test at 7 a.m., 11 a.m., 2 p.m., and 6 p.m. Visual (VI) and kinesthetic imagery (KI) abilities, as well as temporal congruence between actual walking and MI, were collected. Ambient temperature, chronotypes, thermal comfort, affect, and fatigue were also measured. (3) Results: VI scores were higher at 6 p.m. than at 7 a.m., 11 a.m., and 2 p.m., and temporal congruence was higher at 6 p.m. than at 7 a.m. Comfort, thermal sensation, and positive affect scores were higher at 7 a.m. and 6 p.m. (4) Conclusion: Data support greater imagery ability and accuracy when participants perceive the environment as more pleasant and comfortable. MI guidelines typically provided in neutral climates should therefore be adapted to tropical climates, with MI training sessions ideally scheduled in the late afternoon.
Collapse
Affiliation(s)
- Vanessa Hatchi
- Laboratory "Adaptation au Climat Tropical, Exercice & Santé" (UPRES EA 3596), Faculté des Sciences du Sport de Pointe-à-Pitre, Campus Fouillole, Université des Antilles, BP 592, CEDEX, 97159 Pointe-à-Pitre, France
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Nicolas Robin
- Laboratory "Adaptation au Climat Tropical, Exercice & Santé" (UPRES EA 3596), Faculté des Sciences du Sport de Pointe-à-Pitre, Campus Fouillole, Université des Antilles, BP 592, CEDEX, 97159 Pointe-à-Pitre, France
| |
Collapse
|