1
|
Sened H, Gorst Kaduri K, Nathan Gamliel H, Rafaeli E, Zilcha-Mano S, Shamay-Tsoory S. Inter-brain plasticity as a mechanism of change in psychotherapy: A proof of concept focusing on test anxiety. Psychother Res 2025:1-15. [PMID: 39832304 DOI: 10.1080/10503307.2025.2451798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE. There is a growing consensus that interpersonal processes are key to understanding psychotherapy. How might that be reflected in the brain? Recent research proposes that inter-brain synchrony is a crucial neural component of interpersonal interaction. The current proof-of-concept study examines, for the first time, therapist-patient inter-brain synchrony measurement during multiple sessions. To guide the design of future studies, we performed a precursory test in a small sample of the association between inter-brain synchrony and therapeutic change, hypothesizing that it would gradually increase over therapy, reflecting inter-brain plasticity. METHOD. We scanned 18 therapy sessions of participants (N = 8) who underwent a 6-session test anxiety treatment. We measured therapist and patient brain activity using functional near-infrared spectroscopy (fNIRS) and assessed perceived session quality, wellbeing, symptoms, and therapeutic alliance every session. RESULTS. In this proof-of-concept sample inter-brain synchrony gradually increased over treatment, and was associated with reduced symptoms, improved wellbeing and perceived session quality, but not with a stronger therapeutic alliance. fNIRS imaging had no discernable adverse effects. CONCLUSION. Our findings demonstrate that fNIRS imaging during psychotherapy is a feasible and viable research method and that inter-brain plasticity should be a candidate for future research on biological mechanisms underlying therapeutic change.
Collapse
Affiliation(s)
- Haran Sened
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | | | - Eshkol Rafaeli
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
2
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
3
|
Réveillé C, Vergotte G, Perrey S, Bosselut G. Using interbrain synchrony to study teamwork: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105593. [PMID: 38373643 DOI: 10.1016/j.neubiorev.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
It has been proposed that interbrain synchrony (IBS) may help to elucidate the neural mechanisms underpinning teamwork. As hyperscanning studies have provided abundant findings on IBS in team environments, the current review aims to synthesize the findings of hyperscanning studies in a way that is relevant to the teamwork research. A systematic review was conducted. Included studies were classified according to the IPO (i.e. input, process, output) model of teamwork. Three multi-level meta-analyses were performed to quantify the associations between IBS and the three IPO variables. The methodology followed PRISMA guidelines and the protocol was pre-registered (https://osf.io/7h8sa/). Of the 229 studies, 41 were included, representing 1326 teams. The three meta-analyses found statistically significant positive effects, indicating a positive association between IBS and the three IPO teamwork variables. This study provides evidence that IBS is a relevant measure of the teamwork process and argues for the continued use of IBS to study teamwork.
Collapse
Affiliation(s)
- Coralie Réveillé
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France.
| | - Grégoire Vergotte
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| | - Grégoire Bosselut
- EuroMov Digital Health in Motion (Univ Montpellier, IMT Mines d'Alès), 700 avenue du Pic Saint Loup, Montpellier 34090, France
| |
Collapse
|
4
|
Kurihara Y, Takahashi T, Osu R. The topology of interpersonal neural network in weak social ties. Sci Rep 2024; 14:4961. [PMID: 38418895 PMCID: PMC11336176 DOI: 10.1038/s41598-024-55495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
The strategies for social interaction between strangers differ from those between acquaintances, whereas the differences in neural basis of social interaction have not been fully elucidated. In this study, we examined the geometrical properties of interpersonal neural networks in pairs of strangers and acquaintances during antiphase joint tapping. Dual electroencephalogram (EEG) of 29 channels per participant was measured from 14 strangers and 13 acquaintance pairs.Intra-brain synchronizations were calculated using the weighted phase lag index (wPLI) for intra-brain electrode combinations, and inter-brain synchronizations were calculated using the phase locking value (PLV) for inter-brain electrode combinations in the theta, alpha, and beta frequency bands. For each participant pair, electrode combinations with larger wPLI/PLV than their surrogates were defined as the edges of the neural networks. We calculated global efficiency, local efficiency, and modularity derived from graph theory for the combined intra- and inter-brain networks of each pair. In the theta band networks, stranger pairs showed larger local efficiency than acquaintance pairs, indicating that the two brains of stranger pairs were more densely connected. Hence, weak social ties require extensive social interactions and result in high efficiency of information transfer between neighbors in neural network.
Collapse
Affiliation(s)
- Yuto Kurihara
- Graduate School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Toru Takahashi
- Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| |
Collapse
|
5
|
Tomyta K, Saito N, Ohira H. The physiological basis of leader-follower roles in the dyadic alternating tapping task. Front Psychol 2023; 14:1232016. [PMID: 38098523 PMCID: PMC10720364 DOI: 10.3389/fpsyg.2023.1232016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cooperative and collaborative behaviors are important concepts for co-creative communication. One of the key elements for these behaviors is the leader-follower roles in human communication. Leaders are those who maintain their own pace and rhythm, on the contrary, followers are those who follow the pace and rhythm of the other. Well-coordinated leader-follower roles would produce better cooperative and collaborative behaviors, which could promote co-creative communication. Methods Here, to explore the physiological basis for the leader-follower roles, we conducted the dyadic alternating tapping task with electrocardiographic and electroencephalographic recordings. The task would be stable for modeling human communication in the laboratory because it includes timing control in tens of milliseconds and turn-taking. Given that human communications are complex and constantly fluctuating, this study estimated the degree of leader-follower with the state-space model. This model allowed us to calculate two parameters independently for estimating the degree of leader-follower of each participant: αSelf (degree of one's tap(n) was explained by one's tap(n-1)) and αPair (degree of one's tap(n) was explained by one's tap (n-1) and pair's tap (n-1)). Results The result showed heart rate synchronization in the group in which both participants had high αPair. Also, the high-frequency component of heart rate variability was positively correlated with αPair. EEG analyses suggested the deactivation of the mirror neuron system (increasing φ1) in the participants with higher αSelf than lower ones. The activation of the mirror neuron system (increasing φ2) was shown in the participants with lower αPair than higher ones. Discussion These data of physiological basis for leader-follower roles could be useful for the constructivist approach to co-creative communication.
Collapse
Affiliation(s)
- Kenta Tomyta
- Department of Cognitive and Psychological Sciences, Nagoya University, Nagoya, Aichi, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Natsuki Saito
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Ohira
- Department of Cognitive and Psychological Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Yang M, Li X, Sang B, Deng X. Age differences in interbrain synchronization during peer cooperation: an EEG hyperscanning study. Cereb Cortex 2023; 33:10614-10623. [PMID: 37615349 DOI: 10.1093/cercor/bhad308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Healthy peer relationships could provide emotional and social support for adolescents experiencing dramatic physical and environmental changes. Examining age differences in cognitive neural processing during peer interaction provides insight into adolescent interpersonal contact and "social brain" development. The present study compared the age differences between adolescents and adults by examining the behavior and interbrain synchronization of pairs in a cooperative computer game task. 32 pairs of adolescents and 31 pairs of adults were recruited as participants. The reaction times and interbrain synchronization of the participants were measured. The results revealed that interbrain synchronization activation following the onset of the "ready signal" was primarily detected in low-frequency bands such as delta and theta. Adolescent pairs' interbrain synchronization activations were significantly higher than those of adult pairs in the anterior and central brain regions, such as the frontal, frontal-central, and parietal lobes. Correlation analysis indicated a positive correlation between occipital region interbrain synchronization and behavioral performance. The findings provide behavioral and neurophysiological evidence for the characteristics of adolescent interpersonal cognitive processing and point to the significance of low-frequency interbrain synchronization in interpersonal coordination.
Collapse
Affiliation(s)
- Meng Yang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinqi Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Biao Sang
- Lab for Educational Big Data and Policymaking, Shanghai Academy of Educational Sciences, Shanghai 200032, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|