1
|
Obinata D, Yamada Y, Sumiyoshi T, Tanegashima T, Watanabe R, Kobayashi H, Ito D, Urabe F. Recent advances in basic research on prostate cancer: Where we are heading? Int J Urol 2025; 32:219-228. [PMID: 39474871 DOI: 10.1111/iju.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 03/21/2025]
Abstract
In the over 80 years since androgens were found to play a pivotal role in prostate cancer (PCa) progression, androgen deprivation therapy (ADT) has been a cornerstone in treating advanced PCa. Castration-resistant PCa persists, however, with some of these tumors evolving to androgen receptor (AR)-independent forms like neuroendocrine PCa. The development of novel diagnostic and therapeutic approaches to PCa is therefore crucial. This review provides an overview of recent basic research in PCa, focusing on two main areas: PCa cells and their tumor microenvironments. The first section describes current knowledge on the intricate mechanisms of AR signaling pathways, emphasizing the roles of coactivators and chromatin state alterations in gene regulation. Genomic analyses have revealed recurrent mutations and copy number alterations critical for precision medicine. Liquid biopsy has become a promising tool for real-time tumor monitoring, identifying genetic alterations in circulating-tumor DNA or extracellular vesicles. The second section describes the tumor microenvironment of PCa, highlighting its immunosuppressive landscape and the potential of combining ADT with immunotherapy. Advanced techniques, including single-cell RNA sequencing and spatial transcriptomics offer insights into cellular heterogeneity and interactions within the tumor microenvironment, paving the way for novel therapeutic strategies. Integration of these diverse research areas will provide a comprehensive understanding of the current state and future directions of PCa research, underscoring the importance of personalized medicine and the dynamic nature of cancer treatment strategies.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Yasutaka Yamada
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tokiyoshi Tanegashima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuta Watanabe
- Department of Urology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hiroaki Kobayashi
- Department of Urology, National Defense Medical College, Saitama, Japan
| | - Daisuke Ito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Yamamoto S, Obinata D, Takayama K, Funakoshi D, Fujiwara K, Hara M, Takahashi S, Inoue S. Anillin actin-binding protein expression correlates with poor prognosis for prostate cancer patients. Asian J Urol 2024; 11:569-574. [PMID: 39533998 PMCID: PMC11551517 DOI: 10.1016/j.ajur.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/12/2023] [Indexed: 11/16/2024] Open
Abstract
Objective Octamer transcription factor 1 (OCT1), a transcription factor that interacts with androgen receptor, is involved in prostate cancer (PCa) progression. The OCT1 target gene, Anillin actin-binding protein (ANLN), is highly expressed in castration-resistant PCa tissue; however, it remains unclear whether ANLN expression in hormone-sensitive PCa tissue could be used as a predictive biomarker for poor prognosis of patients. We aimed to investigate ANLN expression in PCa tissue obtained via radical prostatectomy and its correlation with clinical parameters. Methods Immunohistochemical staining for ANLN was performed on 86 PCa specimens, followed by evaluation using immunoreactivity (IR) scores. Prognosis was analyzed by the log-rank test using the Kaplan-Meier method to generate a cancer-specific survival curve. The correlations between ANLN IR and clinical parameters as well as OCT1 IR were analyzed using the Chi-squared test. Results The median IR score was 0 for ANLN. Accordingly, given the low median IR score, an IR score of ≥3 was defined as positive. There were 17 (19.8%) ANLN-positive cases, and these cases had a significantly poorer prognosis. Multivariate analysis revealed that the Gleason score, pathological tumor and lymph node stages, and positive ANLN expression were significant predictors of poor prognosis. Notably, patients with both positive ANLN and high OCT1 expression had a significantly decreased overall survival (p=0.001). Conclusion ANLN, which is a OCT1 target gene especially in castration-resistant PCa, is expressed in a small number of hormone-sensitive PCa cases. Both positive ANLN expression and high OCT1 expression are significantly correlated with poor prognosis for PCa patients.
Collapse
Affiliation(s)
- Shinichiro Yamamoto
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, Japan
| |
Collapse
|
3
|
Hashemi Karoii D, Bavandi S, Djamali M, Abroudi AS. Exploring the interaction between immune cells in the prostate cancer microenvironment combining weighted correlation gene network analysis and single-cell sequencing: An integrated bioinformatics analysis. Discov Oncol 2024; 15:513. [PMID: 39349877 PMCID: PMC11442730 DOI: 10.1007/s12672-024-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The rise of treatment resistance and variability across malignant profiles has made precision oncology an imperative in today's medical landscape. Prostate cancer is a prevalent form of cancer in males, characterized by significant diversity in both genomic and clinical characteristics. The tumor microenvironment consists of stroma, tumor cells, and various immune cells. The stromal components and tumor cells engage in mutual communication and facilitate the development of a low-oxygen and pro-cancer milieu by producing cytokines and activating pro-inflammatory signaling pathways. METHODS In order to discover new genes associated with tumor cells that interact and facilitate a hypoxic environment in prostate cancer, we conducted a cutting-edge bioinformatics investigation. This included analyzing high-throughput genomic datasets obtained from the cancer genome atlas (TCGA). RESULTS A combination of weighted gene co-expression network analysis and single-cell sequencing has identified nine dysregulated immune hub genes (AMACR, KCNN3, MME, EGFR, FLT1, GDF15, KDR, IGF1, and KRT7) that are believed to have significant involvement in the biological pathways involved with the advancement of prostate cancer enviriment. In the prostate cancer environment, we observed the overexpression of GDF15 and KRT7 genes, as well as the downregulation of other genes. Additionally, the cBioPortal platform was used to investigate the frequency of alterations in the genes and their effects on the survival of the patients. The Kaplan-Meier survival analysis indicated that the changes in the candidate genes were associated with a reduction in the overall survival of the patients. CONCLUSIONS In summary, the findings indicate that studying the genes and their genomic changes may be used to develop precise treatments for prostate cancer. This approach involves early detection and targeted therapy.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sobhan Bavandi
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Melika Djamali
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | - Ali Shakeri Abroudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Jamroze A, Liu X, Tang DG. Treatment-induced stemness and lineage plasticity in driving prostate cancer therapy resistance. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0005. [PMID: 39363904 PMCID: PMC11449474 DOI: 10.47248/chp2401010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Most human cancers are heterogeneous consisting of cancer cells at different epigenetic and transcriptional states and with distinct phenotypes, functions, and drug sensitivities. This inherent cancer cell heterogeneity contributes to tumor resistance to clinical treatment, especially the molecularly targeted therapies such as tyrosine kinase inhibitors (TKIs) and androgen receptor signaling inhibitors (ARSIs). Therapeutic interventions, in turn, induce lineage plasticity (also called lineage infidelity) in cancer cells that also drives therapy resistance. In this Perspective, we focus our discussions on cancer cell lineage plasticity manifested as treatment-induced switching of epithelial cancer cells to basal/stem-like, mesenchymal, and neural lineages. We employ prostate cancer (PCa) as the prime example to highlight ARSI-induced lineage plasticity during and towards development of castration-resistant PCa (CRPC). We further discuss how the tumor microenvironment (TME) influences therapy-induced lineage plasticity. Finally, we offer an updated summary on the regulators and mechanisms driving cancer cell lineage infidelity, which should be therapeutically targeted to extend the therapeutic window and improve patients' survival.
Collapse
Affiliation(s)
- Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dean G. Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, NY 14263, USA
| |
Collapse
|
5
|
Toyota N, Tsuruta M, Tajima Y, Shigeta K, Okabayashi K, Hasegawa H, Fujita S, Yoshimatsu Y, Ozawa I, Kondo T, Kitagawa Y. Profilin 2 isoform expression is associated with lung metastasis of colorectal cancer according to a comprehensive gene expression study using a mouse model. Oncol Lett 2024; 28:381. [PMID: 38939626 PMCID: PMC11209866 DOI: 10.3892/ol.2024.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Lung metastasis is the second most common type of metastasis in colorectal cancer. Specific treatments for lung metastasis have not been developed since the underlying mechanisms are poorly understood. The present study aimed to elucidate the molecular basis of lung metastasis in colorectal cancer. In a mouse model, cell lines that were highly metastatic to the lungs were established by injecting colorectal cancer cells through the tail vein and removing them from the lungs. Differential gene expression comparing the transfected cells with their parental cells was investigated using DNA microarrays. The results were functionally interpreted using gene enrichment analysis and validated using reverse transcription-quantitative PCR (RT-qPCR). The isoforms of the identified genes were examined by melting curve analysis. The present study established colorectal cancer cell lines that were highly metastatic to the lungs. DNA microarray experiments revealed that genes (N-cadherin, VE-cadherin, Six4, Akt and VCAM1) involved in motility, proliferation and adhesion were upregulated, and genes (tissue inhibitor of metalloproteinase-3 and PAX6) with tumor-suppressive functions were downregulated in metastatic cells. Profilin 2 (PFN2) expression was upregulated in multiple metastatic cell lines using RT-qPCR. Two PFN2 isoforms were overexpressed in metastatic cells. In vitro and in vivo models were established and genes associated with lung metastasis were identified to overcome the heterogeneity of the disease. Overall, aberrant PFN2 expression is unreported in lung metastasis in colorectal cancer. In the present study, two PFN2 isoforms with differential tissue distribution were upregulated in metastatic cells, suggesting that they promote lung metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Naoyuki Toyota
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Colorectal Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Masashi Tsuruta
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Hepato-Biliary-Pancreatic and Gastrointestinal Surgery and Welfare, School of Medicine, International University of Health, Narita, Chiba 286-8520, Japan
| | - Yuki Tajima
- Department of Surgery, Hiratsuka City Hospital, Hiratsuka, Kanagawa 254-0065, Japan
| | - Kohei Shigeta
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirotoshi Hasegawa
- Department of Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba 272-8513, Japan
| | - Shin Fujita
- Department of Colorectal Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Iwao Ozawa
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
- Department of Cancer Proteogenomics, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Tadashi Kondo
- Department of Cancer Proteogenomics, Tochigi Cancer Center, Utsunomiya, Tochigi 320-0834, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
6
|
Fu F, Yu Y, Zou B, Long Y, Wu L, Yin J, Zhou Q. Role of actin-binding proteins in prostate cancer. Front Cell Dev Biol 2024; 12:1430386. [PMID: 39055653 PMCID: PMC11269120 DOI: 10.3389/fcell.2024.1430386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms driving the onset and metastasis of prostate cancer remain poorly understood. Actin, under the control of actin-binding proteins (ABPs), plays a crucial role in shaping the cellular cytoskeleton, which in turn supports the morphological alterations in normal cells, as well as the invasive spread of tumor cells. Previous research indicates that ABPs of various types serve distinct functions, and any disruptions in their activities could predispose individuals to prostate cancer. These ABPs are intricately implicated in the initiation and advancement of prostate cancer through a complex array of intracellular processes, such as severing, linking, nucleating, inducing branching, assembling, facilitating actin filament elongation, terminating elongation, and promoting actin molecule aggregation. As such, this review synthesizes existing literature on several ABPs linked to prostate cancer, including cofilin, filamin A, and fascin, with the aim of shedding light on the molecular mechanisms through which ABPs influence prostate cancer development and identifying potential therapeutic targets. Ultimately, this comprehensive examination seeks to contribute to the understanding and management of prostate diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Obinata D, Takayama K, Inoue S, Takahashi S. Exploring androgen receptor signaling pathway in prostate cancer: A path to new discoveries. Int J Urol 2024; 31:590-597. [PMID: 38345202 DOI: 10.1111/iju.15424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
Androgen deprivation therapy has achieved significant success in treating prostate cancer through strategies centered on the androgen receptor. However, the emergence of castration-resistant prostate cancer highlights this therapy limitation, underscoring the need to elucidate the mechanisms of treatment resistance. This review aimed to focus on multifaceted resistance mechanisms, including androgen receptor overexpression, splice variants, missense mutations, the involvement of the glucocorticoid receptor, and alterations in coregulators and transcription factors, revealing their roles in castration-resistant prostate cancer progression. These mechanisms promote cell survival and proliferation, depending on the androgen receptor signaling pathway, leading to resistance to conventional therapies. Amplification and mutations in the androgen receptor gene facilitate selective adaptation in treatment-resistant cells, consequently diminishing therapeutic efficacy. Furthermore, the activation of glucocorticoid receptors and aberrant regulation of specific coregulators and transcription factors contribute to the activation of androgen receptor-independent signaling pathways, promoting cell survival and proliferation. These findings hold promise for identifying new targets for treating castration-resistant prostate cancer and developing personalized treatment strategies. The development of future therapies will hinge on precisely targeting the androgen receptor signaling pathway, necessitating a deeper understanding of the molecular targets unique to castration-resistant prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/therapy
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Androgen Antagonists/therapeutic use
- Gene Expression Regulation, Neoplastic
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Prostatic Neoplasms/therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Obinata D, Takayama K, Lawrence MG, Funakoshi D, Hara M, Niranjan B, Teng L, Taylor RA, Risbridger GP, Takahashi S, Inoue S. Patient-derived castration-resistant prostate cancer model revealed CTBP2 upregulation mediated by OCT1 and androgen receptor. BMC Cancer 2024; 24:554. [PMID: 38698344 PMCID: PMC11067191 DOI: 10.1186/s12885-024-12298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku Tokyo, Tokyo, 173-0015, Japan
| | - Mitchell G Lawrence
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
- Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku Tokyo, Tokyo, 173-0015, Japan.
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| |
Collapse
|
9
|
Yu S, Cui X, Zhou S, Li Y, Feng W, Zhang X, Zhong Y, Zhang P. THOC7-AS1/OCT1/FSTL1 axis promotes EMT and serves as a therapeutic target in cutaneous squamous cell carcinoma. J Transl Med 2024; 22:347. [PMID: 38605354 PMCID: PMC11010364 DOI: 10.1186/s12967-024-05116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.
Collapse
Affiliation(s)
- Site Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Xu Cui
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Yun Li
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Xiangjun Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Yuhui Zhong
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, P.R. China.
| |
Collapse
|
10
|
Zhang H, Li Z, Jiang J, Lei Y, Xie J, Liu Y, Yi B. SNTB1 regulates colorectal cancer cell proliferation and metastasis through YAP1 and the WNT/β-catenin pathway. Cell Cycle 2023; 22:1865-1883. [PMID: 37592763 PMCID: PMC10599191 DOI: 10.1080/15384101.2023.2244778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 08/19/2023] Open
Abstract
Colorectal cancer is a common type of digestive tract cancer with a significant morbidity and death rate across the world, partially attributing to the metastasis-associated problems. In this study, integrative bioinformatics analyses were performed to identify genes that might contribute to colorectal cancer metastasis, and 293 genes were dramatically increased and 369 genes were decreased within colon cancer samples. Among up-regulated genes, top five genes correlated with colorectal cancer patient's prognosis were verified for expression in clinical samples and syntrophin beta 1 (SNTB1) was the most up-regulated. In vitro, SNTB1 knockdown suppresses the malignant behaviors of colorectal cancer cells, including cell viability, colony formation capacity, as well as the abilities to migrate and invade. Furthermore, SNTB1 knockdown decreased the levels of Wnt1, C-Jun, C-Myc, TCF7, and cyclin D1, and inhibited EMT in both cell lines. In vivo, SNTB1 knockdown inhibited tumor growth and metastasis in nude mice models. SNTB1 positively regulated Yes1 associated transcriptional regulator (YAP1) expression; YAP1 partially reversed the effects of SNTB1 on colorectal cancer cell phenotypes and the Wnt/β-catenin/MYC signaling. In conclusion, SNTB1 knockdown inhibits colorectal cancer cell aggressiveness in vitro and tumor growth and metastasis in vivo through the Wnt/β-catenin/MYC signaling; YAP1 might mediate SNTB1 functions on colorectal cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Juan Jiang
- Department of Nephrology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Lei
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingmao Xie
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yihui Liu
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yi
- Department of Gastrointestinal Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Microfibril-associated protein 2 is activated by POU class 2 homeobox 1 and promotes tumor growth and metastasis in tongue squamous cell carcinoma. Hum Cell 2023; 36:822-834. [PMID: 36527580 DOI: 10.1007/s13577-022-00840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) represents the most frequent malignancy of the oral cavity, characterized by a high metastasis rate and poor prognosis. Microfibril-associated protein 2 (MFAP2), as an extracellular matrix protein, has been found to drive tumor progression. The function and underlying mechanism of MFAP2 in TSCC remain unknown. The expression levels of MFAP2 were analyzed in tissue samples from 30 TSCC patients by real time-polymerase chain reaction and western blot assays. Our results revealed that the expression of MFAP2 mRNA and protein was upregulated in TSCC tissue samples compared with that in the matched para-carcinoma tissue samples. By performing in vitro gain-of-function or loss-of-function experiments and in vivo mouse xenograft experiments, we found that overexpression of MFAP2 induced proliferation and promoted transition from G1 to S phase of TSCC cells. Stronger invasive and migratory capabilities were observed in MFAP2-overexpressing TSCC cells. In contrast, knockdown of MFAP2 exhibited anti-proliferative, apoptosis-promoting and pro-migratory roles in TSCC cells. Knockdown of MFAP2 significantly inhibited xenograft tumor growth. Mechanistically, POU class 2 homeobox 1 (POU2F1) was recruited to the region of MFAP2 promoter and upregulates the expression of MFAP2. Silencing of MFAP2 effectively blocked the proliferation, migration, and invasion of TSCC cells caused by POU2F1 overexpression. Our results indicate that the role of MFAP2 in TSCC may attribute to transcriptional regulation of POU2F1.
Collapse
|
12
|
Takayama KI, Inoue S. Targeting phase separation on enhancers induced by transcription factor complex formations as a new strategy for treating drug-resistant cancers. Front Oncol 2022; 12:1024600. [PMID: 36263200 PMCID: PMC9574090 DOI: 10.3389/fonc.2022.1024600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The limited options for treating patients with drug-resistant cancers have emphasized the need to identify alternative treatment targets. Tumor cells have large super-enhancers (SEs) in the vicinity of important oncogenes for activation. The physical process of liquid-liquid phase separation (LLPS) contributes to the assembly of several membrane-less organelles in mammalian cells. Intrinsically disordered regions (IDRs) of proteins induce LLPS formation by developing condensates. It was discovered that key transcription factors (TFs) undergo LLPS in SEs. In addition, TFs play critical roles in the epigenetic and genetic regulation of cancer progression. Recently, we revealed the essential role of disease-specific TF collaboration changes in advanced prostate cancer (PC). OCT4 confers epigenetic changes by promoting complex formation with TFs, such as Forkhead box protein A1 (FOXA1), androgen receptor (AR) and Nuclear respiratory factor 1 (NRF1), inducing PC progression. It was demonstrated that TF collaboration through LLPS underlying transcriptional activation contributes to cancer aggressiveness and drug resistance. Moreover, the disruption of TF-mediated LLPS inhibited treatment-resistant PC tumor growth. Therefore, we propose that repression of TF collaborations involved in the LLPS of SEs could be a promising strategy for advanced cancer therapy. In this article, we summarize recent evidence highlighting the formation of LLPS on enhancers as a potent therapeutic target in advanced cancers.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|