1
|
Zhao J, Li X, Liang C, Yan Y. Can Exercise-Mediated Adipose Browning Provide an Alternative Explanation for the Obesity Paradox? Int J Mol Sci 2025; 26:1790. [PMID: 40076419 PMCID: PMC11898606 DOI: 10.3390/ijms26051790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Overweight patients with cardiovascular disease (CVD) tend to survive longer than normal-weight patients, a phenomenon known as the "obesity paradox". The phenotypic characteristics of adipose distribution in these patients (who survive longer) often reveal a larger proportion of subcutaneous white adipose tissue (scWAT), suggesting that the presence of scWAT is negatively associated with all-cause mortality and that scWAT appears to provide protective benefits in patients facing unhealthy states. Exercise-mediated browning is a crucial aspect of the benign remodeling process of adipose tissue (AT). Reduced accumulation, reduced inflammation, and associated adipokine secretion are directly related to the reduction in CVD mortality. This paper summarized the pathogenetic factors associated with AT accumulation in patients with CVD and analyzed the possible role and pathway of exercise-mediated adipose browning in reducing the risk of CVD and CVD-related mortality. It is suggested that exercise-mediated browning may provide a new perspective on the "obesity paradox"; that is, overweight CVD patients who have more scWAT may gain greater cardiovascular health benefits through exercise.
Collapse
Affiliation(s)
- Jiani Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Chunyu Liang
- School of Physical Education, Guangxi University (GXU), Nanning 530004, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University (BSU), Beijing 100084, China
- Exercise and Physical Fitness, Beijing Sport University (BSU), Beijing 100084, China
| |
Collapse
|
2
|
Zhang M, Yang E, Qin X, Zhang S, Zhu Y, Fu H, He B. EPSTI1 promotes osteoclast differentiation and bone resorption by PKR/NF-κB signaling. Biochem Biophys Res Commun 2024; 734:150463. [PMID: 39083969 DOI: 10.1016/j.bbrc.2024.150463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Epithelial stromal interaction 1 (EPSTI1) plays an important role in M1 macrophages, which induce osteoclastogenesis. One recent genome-wide association study (GWAS) involving 426,824 individuals has shown that EPSTI1 is strongly associated with osteoporosis (P < 5E-8). Therefore, we speculate that EPSTI1 participates in the modulation of osteoporosis through osteoclastogenesis. The roles of EPSTI1 in osteoclastogenesis and bone resorption remain unclear. METHODS Femur specimens were collected from osteoporotic patients and control patients. Immunofluorescence staining was used to detect the expression of EPSTI1 and signaling pathways. The osteoclastic potential of RAW264.7 cells with Sh-EPSTI1 lentivirus infection was tested using tartrate-resistant acid phosphatase (TRAP) staining, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Western blotting was also used to examine signaling pathways. RESULTS In this study, EPSTI1 was found to be significantly increased in tartrate-resistant acid phosphatase positive (ACP5+) osteoclasts of bone sections from osteoporotic patients. Next, we identified EPSTI1 as a positive regulator of osteoclastogenesis and osteoclast differentiation capability. Diminished EPSTI1 expression resulted in reduced osteoclastic resorption. Mechanistically, EPSTI1-driven osteoclastogenesis was regulated by NF-κB pathway, which was mediated by the phosphorylation of protein kinase R (p-PKR). Furthermore, EPSTI1 participating in the modulation of osteoporosis via PKR/NF-κB pathway was also verified in the bone samples of osteoporotic patients. CONCLUSIONS Collectively, our findings suggest that EPSTI1 may regulate osteoclast differentiation and bone resorption through PKR/NF-κB pathway and in vivo experiments are needed to further verify EPSTI1 as the therapy target for osteoporosis.
Collapse
Affiliation(s)
- Muzi Zhang
- Department of Plastic Surgery, Medical Cosmetology Center of the First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - E Yang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Qin
- Department of Plastic Surgery, Medical Cosmetology Center of the First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shun Zhang
- Department of Plastic Surgery, Medical Cosmetology Center of the First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyi Fu
- Department of Plastic Surgery, Medical Cosmetology Center of the First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Bin He
- Department of Plastic Surgery, Medical Cosmetology Center of the First Branch, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Chen X, Cheng S, Huang L, Chen X, Jin N, Hong J, Zhao X, Rong J. Serum uric acid, body mass index, and cardiovascular diseases: A multiple two-step Mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:2386-2394. [PMID: 39097442 DOI: 10.1016/j.numecd.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/14/2024] [Accepted: 05/26/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND AIMS A number of health issues, including high serum uric acid (SUA) and cardiovascular disease (CVD), have been linked to obesity based on observational evidence, though it's currently unclear how these issues are causally related. In order to determine whether obesity mediates this association, we set out to investigate the causal relationship between SUA, obesity, and CVD. METHODS AND RESULTS From publicly available genome-wide association studies, we acquired instrumental variables that had a strong correlation to SUA and body mass index (BMI). We employed multiple two-step Mendelian randomization (MR) analyses, using genetic and clinical data from various publicly available biological databases. The mediating role of BMI was examined through mediation analysis. SUA was genetically correlated with BMI [OR = 1.080, 95% CI: 1.024-1.139, P = 0.005]. There was a positive causal effect of SUA on AF [OR = 0.892, 95% CI: 0.804-0.990, P = 0.032], CAD [OR = 0.942, 95% CI: 0.890-0.997, P = 0.037], and EHT [OR = 1.080, 95% CI: 1.024-1.139, P = 0.005]. Among them, BMI mediated the effects of SUA on AF (42.2%; 95% CI, 35.3%-51.9%), CAD (76.3%; 95% CI, 63.4%-92.0%), and EHT (10.0%; 95% CI, 0%-20.0%). CONCLUSION Our research revealed a causal relationship between high SUA exposure and an increased risk of obesity. Additionally, a high SUA level was linked to an increased risk of various CVDs. Given that individuals with high SUA are more likely to be susceptible to AF, CAD, and EHT, attention must be given to their weight status.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Nursing, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong New District, Shanghai, China
| | - Siyuan Cheng
- Department of Cardiology, First Affiliated Hospital of Ji'Nan University, Tianhe District, Guangzhou, Guangdong, China
| | - Lei Huang
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Xudong Chen
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Nake Jin
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Jun Hong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Xuechen Zhao
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Jiacheng Rong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China.
| |
Collapse
|
4
|
Mou X, Sun M, Chen X. Causal effect of education on bone mineral density: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37435. [PMID: 38489681 PMCID: PMC10939692 DOI: 10.1097/md.0000000000037435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Education level may have some association with the incidence of osteoporosis, but it is elusive if this association is causal. This two-sample Mendelian randomization analysis focused on the causal effect of education level on femoral neck bone mineral density (FN-BMD), forearm BMD, lumbar spine BMD, and heel BMD. Twelve single nucleotide polymorphisms were used as instrumental variables. The results suggested that high education level was associated with improved FN-BMD (beta-estimate: 0.406, 95% confidence interval: 0.061 to 0.751, standard error: 0.176, P-value = .021). There were null association between education and other sites of bone mineral density. Our results found the causal effect of high education level on improved FN-BMD, and improved educational attainment may be beneficial to prevent osteoporosis.
Collapse
Affiliation(s)
- Xiaoqing Mou
- Department of Radiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingqi Sun
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Xiaojun Chen
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Kizer JR. The elusive quest for causality in adiponectin's bimodal relationship with cardiovascular disease: Mendelian randomization meets Janus. Cardiovasc Res 2024; 120:3-5. [PMID: 38170839 DOI: 10.1093/cvr/cvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Affiliation(s)
- Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, 4150 Clement St., San Francisco, CA 94121, USA
- Department of Medicine, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th St., San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Nielsen MB, Çolak Y, Benn M, Mason A, Burgess S, Nordestgaard BG. Plasma adiponectin levels and risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction: large-scale observational and Mendelian randomization evidence. Cardiovasc Res 2024; 120:95-107. [PMID: 37897683 PMCID: PMC10898934 DOI: 10.1093/cvr/cvad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Adiponectin may play an important protective role in heart failure and associated cardiovascular diseases. We hypothesized that plasma adiponectin is associated observationally and causally, genetically with risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. METHODS AND RESULTS In the Copenhagen General Population Study, we examined 30 045 individuals with plasma adiponectin measurements observationally and 96 903 individuals genetically in one-sample Mendelian randomization analyses using five genetic variants explaining 3% of the variation in plasma adiponectin. In the HERMES, UK Biobank, The Nord-Trøndelag Health Study (HUNT), deCODE, the Michigan Genomics Initiative (MGI), DiscovEHR, and the AFGen consortia, we performed two-sample Mendelian randomization analyses in up to 1 030 836 individuals using 12 genetic variants explaining 14% of the variation in plasma adiponectin.In observational analyses modelled linearly, a 1 unit log-transformed higher plasma adiponectin was associated with a hazard ratio of 1.51 (95% confidence interval: 1.37-1.66) for heart failure, 1.63 (1.50-1.78) for atrial fibrillation, 1.21 (1.03-1.41) for aortic valve stenosis, and 1.03 (0.93-1.14) for myocardial infarction; levels above the median were also associated with an increased risk of myocardial infarction, and non-linear U-shaped associations were more apparent for heart failure, aortic valve stenosis, and myocardial infarction in less-adjusted models. Corresponding genetic, causal risk ratios were 0.92 (0.65-1.29), 0.87 (0.68-1.12), 1.55 (0.87-2.76), and 0.93 (0.67-1.30) in one-sample Mendelian randomization analyses, and no significant associations were seen for non-linear one-sample Mendelian randomization analyses; corresponding causal risk ratios were 0.99 (0.89-1.09), 1.00 (0.92-1.08), 1.01 (0.79-1.28), and 0.99 (0.86-1.13) in two-sample Mendelian randomization analyses, respectively. CONCLUSION Observationally, elevated plasma adiponectin was associated with an increased risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. However, genetic evidence did not support causality for these associations.
Collapse
Affiliation(s)
- Maria Booth Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
| | - Yunus Çolak
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
- Department of Respiratory Medicine, Copenhagen University Hospital—Herlev and Gentofte, Copenhagen, Denmark
| | - Marianne Benn
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Amy Mason
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
7
|
Jiang F, Xie X, Pang X, Zheng L. Efficacy of magnetic therapy for osteoporotic patients: A meta-analysis of randomized controlled studies. Medicine (Baltimore) 2024; 103:e36881. [PMID: 38215089 PMCID: PMC10783348 DOI: 10.1097/md.0000000000036881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Magnetic therapy may have some potential in treating osteoporosis, and this meta-analysis aims to study the efficacy of magnetic therapy for osteoporotic patients. METHODS We have searched several databases including PubMed, EMbase, Web of Science, EBSCO and Cochrane library databases, and selected the randomized controlled trials comparing the efficacy of magnetic therapy for osteoporotic patients. This meta-analysis was conducted using the random-effect or fixed-effect model based on the heterogeneity. RESULTS Five randomized controlled trials were included in this meta-analysis. Compared with sham procedure in osteoporotic patients, magnetic therapy was associated with significantly increased bone mineral density (standard mean difference [SMD] = 2.39; 95% confidence interval [CI] = 0.27-4.51; P = .03), decreased pain scores (mean difference [MD] = -0.86; 95% CI = -1.04 to -0.67; P < .00001), and calcium (MD = -0.61; 95% CI = -0.92 to -0.29; P = .0002), but revealed no influence on phosphate (MD = 0.07; 95% CI = -0.30 to 0.44; P = .71), osteocalcin (SMD = 0.65; 95% CI = -2.87 to 4.17; P = .72), or ALP (SMD = -0.43; 95% CI = -0.92 to 0.07; P = .09). CONCLUSIONS Magnetic therapy may be effective for the treatment of osteoporotic patients.
Collapse
Affiliation(s)
- Feng Jiang
- Department of the Orthopedics, Affiliated Traditional Chinese Medicine, Southwest Medical University, Chengdu, Sichuan, China
| | - Xianping Xie
- Department of the Orthopedics, Affiliated Traditional Chinese Medicine, Southwest Medical University, Chengdu, Sichuan, China
| | - Xianlun Pang
- Physical Examination Center, Affiliated Traditional Chinese Medicine, Southwest Medical University, Chengdu, Sichuan, China
| | - Li Zheng
- Department of the Imaging, Affiliated Traditional Chinese Medicine, Southwest Medical University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Mou X, He B, Zhang M, Zhu Y, Ou Y, Chen X. Causal influence of muscle weakness on cardiometabolic diseases and osteoporosis. Sci Rep 2023; 13:19974. [PMID: 37968290 PMCID: PMC10651997 DOI: 10.1038/s41598-023-46837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
The causal roles of muscle weakness in cardiometabolic diseases and osteoporosis remain elusive. This two-sample Mendelian randomization (MR) study aims to explore the causal roles of muscle weakness in the risk of cardiometabolic diseases and osteoporosis. 15 single nucleotide polymorphisms (SNPs, P < 5 × 10-8) associated with muscle weakness were used as instrumental variables. Genetic predisposition to muscle weakness led to increased risk of coronary artery disease (inverse variance weighted [IVW] analysis, beta-estimate: 0.095, 95% confidence interval [CI]: 0.023 to 0.166, standard error [SE]:0.036, P-value = 0.009) and reduced risk of heart failure (weight median analysis, beta-estimate: - 0.137, 95% CI - 0.264 to - 0.009, SE:0.065, P-value = 0.036). In addition, muscle weakness may reduce the estimated bone mineral density (eBMD, weight median analysis, beta-estimate: - 0.059, 95% CI - 0.110 to - 0.008, SE:0.026, P-value = 0.023). We found no MR associations between muscle weakness and atrial fibrillation, type 2 diabetes or fracture. This study provides robust evidence that muscle weakness is causally associated with the incidence of coronary artery disease and heart failure, which may provide new insight to prevent and treat these two cardiometabolic diseases.
Collapse
Affiliation(s)
- Xiaoqing Mou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Muzi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojun Chen
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Causal Roles of Sleep Duration in Osteoporosis and Cardiometabolic Diseases: A Mendelian Randomization Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6819644. [PMID: 36277903 PMCID: PMC9586149 DOI: 10.1155/2022/6819644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Sleep duration suggests some association with osteoporosis and cardiometabolic diseases, but it is unknown if these associations are causal or confounded. In this two-sample Mendelian randomization (MR) study, we included the largest genome-wide association studies (GWASs) associated with sleep duration and the outcome measures of osteoporosis and cardiometabolic diseases. Finally, 25 single nucleotide polymorphisms (SNPs) associated with short sleep duration and 7 SNPs associated with long sleep duration obtained the genome-wide significance (P < 5 × 10-8) and were used as instrumental variables. Genetic predisposition to short sleep duration was strongly associated with increased risk of coronary artery disease (beta-estimate: 0.199, 95% confidence interval CI: 0.081 to 0.317, standard error SE:0.060, P value = 0.001) and heart failure (beta-estimate: 0.145, 95% CI: 0.025 to 0.264, SE:0.061, P value = 0.017), which were both confirmed by the sensitivity analyses. Both short and long sleep duration may reduce the estimated bone mineral density (eBMD, beta-estimate: -0.086, 95% CI: -0.141 to -0.031, SE:0.028, P value = 0.002 for short sleep duration; beta-estimate: -0.080, 95% CI: -0.120 to -0.041, SE:0.020, P value < 0.0001 for long sleep duration). There was limited evidence of associations between sleep duration and fracture, type 2 diabetes, atrial fibrillation, fasting glucose, fasting insulin, or HbA1c. This study provides robust evidence that short sleep duration is causally associated with high risk of coronary artery disease and heart failure and suggests that short sleep duration should be avoided to prevent these two cardiovascular diseases. Short and long sleep duration show some MR association with reduced eBMD, which indicates that both short and long sleep duration may be prevented to reduce the incidence of osteoporosis.
Collapse
|