1
|
Zhao C, Jin T, Yang K, Liu X, Ren M, She D, Hu Q, Li S. The hematopoietic function, histological characteristics, and transcriptome profiling of Wanxi white geese ovary during nesting and late-laying stages. Poult Sci 2025; 104:104764. [PMID: 39764877 PMCID: PMC11760318 DOI: 10.1016/j.psj.2025.104764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/29/2025] Open
Abstract
Despite several factors influencing reproduction in geese, but the precise molecular mechanisms of egg cessation are not fully understood. In the present study, the hematopoietic parameters and serum hormone levels in Wanxi white geese were analyzed. RNA-Seq was utilized to identify the differentially expressed mRNAs (DEGs) and lncRNAs (DE lncRNAs) in the ovarian tissues associated with nesting in geese during the late-laying and nesting periods. Triglyceride (TG) and alkaline phosphatase (ALP) levels were higher in late-laying geese, while white blood cell (WBC), neutrophil (NEU), hemoglobin (HGB), and hematocrit (HCT) levels were significantly lower in late-laying geese. Serum levels of luteinizing hormone (LH), estrogen (E2), and progesterone (P4) increased significantly during the late-laying period, whereas prolactin (PRL) level was lower in the late-laying period than the nesting period. During the late-laying period, geese had a clear follicular hierarchy, with ovaries exhibiting mature and primary follicles. In the nesting period, the ovaries were degenerated and had many primary follicles without follicular development. Analysis of mRNA-lncRNA expression revealed 1,257 DEGs between the nesting and the late-laying stages, of which 841 were up-regulated and 416 were down-regulated DEGs. A total of 340 DE lncRNAs were identified between the nesting and the late-laying periods, with 113 being up-regulated and 227 down-regulated lncRNAs. DEGs, including TMEM, DRD3, IGFBP7, MAPK13, GnRHR2, HECTD3, KCNU1, OPRD1, and VCAM1, along with DE lncRNAs, including XR_001203613.1, XR_001206155.1, XR_001207759.1, XR_001213571.1 and XR_001214368.1 participate in reproduction in geese. Correlation analysis indicated that the cis-regulation of XR_001213096.1-ITPR3, XR_001203613.1-GALNT15, XR_001206155.1-COL6A3, XR_001207759.1-ANKS1B, and XR_001214368.1-VPS45 participate in the molecular mechanisms underlying nesting in geese. Functional enrichment analysis revealed the DEGs and DE lncRNAs associated with focal adhesion, extracellular matrix (ECM)-receptor interaction, cell adhesion molecules (CAMs), and PI3K-Akt signaling pathways, were responsible for the differences in the ovaries between the nesting and late-laying periods. This study offers valuable information on the roles of genes and lncRNAs, and the mechanisms underlying variations in reproductive performance between the late-laying and nesting periods.
Collapse
Affiliation(s)
- Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China; Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei 236065, PR China
| | - Tao Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China
| | - Kefeng Yang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China
| | - Xinyu Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China
| | - Deyong She
- Lu'an Academy of Agricultural Sciences, Lu'an 237008, PR China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, PR China; Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, PR China.
| |
Collapse
|
2
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
3
|
Yang JS, Liu TY, Chen YC, Tsai SC, Chiu YJ, Liao CC, Tsai FJ. Genome-Wide Association Study of Alopecia Areata in Taiwan: The Conflict Between Individuals and Hair Follicles. Clin Cosmet Investig Dermatol 2023; 16:2597-2612. [PMID: 37752970 PMCID: PMC10519225 DOI: 10.2147/ccid.s428788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Purpose Alopecia areata (AA) is one of the most prevalent autoimmune diseases affecting humans. Given that hair follicles are immune-privileged, autoimmunity can result in disfiguring hair loss. However, the genetic basis for AA in the Taiwanese population remains unknown. Materials and Methods A genome-wide association study was conducted using a cohort of 408 AA cases and 8167 controls. To link variants to gene relationships, we used 882 SNPs (P<1E-05) within 74 genes that were associated with AA group to build the biological networks by IPA software. HLA diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)-R package and chi-square analysis. Results Seven single nucleotide polymorphisms (SNPs) including LINC02006 (rs531166736, rs187306735), APC (rs112800832_C_CAT), SRP19 (rs139948960, rs144784670), EGFLAM (rs16903975) and LDLRAD3 (rs79874564) were closely associated with the AA phenotype (P<5E-08). Examination of biological networks revealed that these genomic areas are associated with antigen presentation signaling, B cell and T cell development, Th1 and Th2 activation pathways, Notch signaling, crosstalk signaling between dendritic cells and natural killer cells, and phagosome maturation. Based on human leukocyte antigen (HLA) genotype analysis, four HLA genotypes (HLA-B*15:01-*40:01, HLA-DQA1*01:02-*03:03, HLA-DQA1*01:02, and HLA-DQB1*02:01) were found to be associated with AA (adjusted p-value<0.05). HLA-DQA1*01:02 is the most significantly related gene in the Taiwanese population (adjusted p-value = 2.09E-05). Conclusion This study successfully identified susceptibility loci associated with AA in the Taiwanese population. These findings not only shed light on the origins of AA within the Taiwanese context but also contribute to a comprehensive understanding of the genetic factors influencing AA susceptibility.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yu-Chia Chen
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chi-Chou Liao
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
- China Medical University Children’s Hospital, Taichung, 404327, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, 404327, Taiwan
| |
Collapse
|