1
|
Sakhabutdinov IT, Chastukhina IB, Ryazanov EA, Ponomarev SN, Gogoleva OA, Balkin AS, Korzun VN, Ponomareva ML, Gorshkov VY. Variability of microbiomes in winter rye, wheat, and triticale affected by snow mold: predicting promising microorganisms for the disease control. ENVIRONMENTAL MICROBIOME 2025; 20:3. [PMID: 39799378 PMCID: PMC11724586 DOI: 10.1186/s40793-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens. RESULTS The variability of microbiomes between different crops within a particular agrocenosis was largely determined by fungal communities, whereas the variability of microbiomes of a particular crop in different agrocenoses was largely determined by bacterial communities. The snow mold pathocomplex was the most "constant" in rye, with the lowest level of between-replicate variability and between-agrocenoses variability and (similar to the triticale snow mold pathocomplex) strong dominance of Microdochium over other snow mold fungi. The wheat snow mold pathocomplex was represented by different snow mold fungi, including poorly investigated Phoma sclerotioides. To predict snow mold-control microorganisms, a conveyor of statistical methods was formed and applied; this conveyor enables considering not only the correlation between the abundance of target taxa and a phytopathogen but also the stability and fitness of taxa within plant-associated communities and the reproducibility of the predicted effect of taxa under different conditions. This conveyor can be widely used to search for biological agents against various plant infectious diseases. CONCLUSIONS The top indicator microbial taxa for winter wheat and rye following the winter period were Ph. sclerotioides and Microdochium, respectively, both of which are causal agents of snow mold disease. Bacteria from the Cellulomonas, Lechevalieria, and Pseudoxanthomonas genera and fungi from the Cladosporium, Entimomentora, Pseudogymnoascus, and Cistella genera are prime candidates for testing their plant-protective properties against Microdochium-induced snow mold disease and for further use in agricultural practice.
Collapse
Affiliation(s)
- Ildar T Sakhabutdinov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Inna B Chastukhina
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Egor A Ryazanov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Sergey N Ponomarev
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Olga A Gogoleva
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Viktor N Korzun
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555, Einbeck, Germany
| | - Mira L Ponomareva
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Vladimir Y Gorshkov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia.
| |
Collapse
|
2
|
Jaiswal G, Rana R, Nayak PK, Chouhan R, Gandhi SG, Patel HK, Patil PB. Luteibacter sahnii sp. nov., A Novel Yellow-Colored Xanthomonadin Pigment Producing Probiotic Bacterium from Healthy Rice Seed Microbiome. Curr Microbiol 2024; 81:424. [PMID: 39446145 DOI: 10.1007/s00284-024-03950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
To explore the rice seed microbiome, our objective was to isolate novel strains of Xanthomonas, a plant-associated bacterium with diverse lifestyles. Four isolates, anticipated to be Xanthomonas based on morphological features of yellow colonies, were obtained from healthy rice seeds. Phylo-taxono-genomic analysis revealed that these isolates formed monophyletic lineages belonging to a novel species within the genus Luteibacter. Pairwise ortho Average Nucleotide Identity and digital DNA-DNA hybridization confirmed their distinct species status. We propose Luteibacter sahnii sp. nov. as a novel species, with PPL193T = MTCC 13290T = ICMP 24807T = CFBP 9144T as the type strain and PPL201, PPL552, and PPL554 as other constituent members. The fatty acid profile of the type strain is dominated by branched fatty acids like Iso-C15:0, consistent with other members of the genus. The novel species displays non-pathogenic attributes and exhibits plant probiotic properties, protecting rice plants from the leaf blight pathogen X. oryzae pv. oryzae. Production of Indole-3-Acetic Acid (IAA) and genomic regions encoding anti-microbial peptides emphasize its potential contributions to plant hosts. This study underscores the importance of employing a combination of phenotypic and genotypic methods in culturomics to enhance our understanding of rice seed microbiome diversity.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
- The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
- The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Praveen Kumar Nayak
- The Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Rekha Chouhan
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sumit G Gandhi
- The Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Hitendra K Patel
- The Academy of Scientific and Innovative Research, Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
- The Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
3
|
Rammali S, Ciobică A, El Aalaoui M, Rahim A, Kamal FZ, Dari K, Khattabi A, Romila L, Novac B, Petroaie A, Bencharki B. Exploring the antimicrobial and antioxidant properties of Lentzea flaviverrucosa strain E25-2 isolated from Moroccan forest soil. Front Microbiol 2024; 15:1429035. [PMID: 39104582 PMCID: PMC11298423 DOI: 10.3389/fmicb.2024.1429035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
The alarming rise in antimicrobial resistance (AMR) has created a significant public health challenge, necessitating the discovery of new therapeutic agents to combat infectious diseases and oxidative stress-related disorders. The Lentzea flaviverrucosa strain E25-2, isolated from Moroccan forest soil, represents a potential avenue for such research. This study aimed to identify the isolate E25-2, obtained from soil in a cold Moroccan ecosystem, and further investigate its antimicrobial and antioxidant activities. Phylogenetic analysis based on 16S rRNA gene sequences revealed the strain's classification within the Lentzea genus, with a sequence closely resembling that of Lentzea flaviverrucosa AS4.0578 (96.10% similarity). Antimicrobial activity in solid media showed moderate to strong activity against Staphylococcus aureus ATCC 25923, Bacillus cereus strain ATCC 14579, Escherichia coli strain ATCC 25922, Candida albicans strain ATCC 60193 and 4 phytopathogenic fungi. In addition, ethyl acetate extract of this isolate demonstrated potent antimicrobial activity against 7 clinically multi-drug resistant bacteria. Furthermore, it demonstrated antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, as well as a significant increase in ferric reducing antioxidant power. A significant positive correlation was observed between antioxidant activities and total content of phenolic compounds (p < 0.0001), along with flavonoids (p < 0.0001). Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of amines, hydroxyl groups, pyridopyrazinone rings, esters and pyrrolopyrazines. The Lentzea genus could offer promising prospects in the fight against antibiotic resistance and in the prevention against oxidative stress related diseases.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iași, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Iași, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | | | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat, Morocco
| | - Khadija Dari
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Laura Romila
- Department of Chemistry, “Ioan Haulica” Institute, Apollonia University, Iași, Romania
| | - Bogdan Novac
- Urology Department, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Antoneta Petroaie
- Family Medicine Department, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| |
Collapse
|
4
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, García-Mena J, Nirmalkar K, Curiel-Quesada E. Dynamic and structural response of a multispecies biofilm to environmental perturbations induced by the continuous increase of benzimidazole fungicides in a permeable reactive biobarrier. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:329-344. [PMID: 38887762 PMCID: PMC11180048 DOI: 10.1007/s40201-024-00903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/21/2024] [Indexed: 06/20/2024]
Abstract
Purpose This work explores the dynamics of spatiotemporal changes in the taxonomic structure of biofilms and the degradation kinetics of three imidazole group compounds: carbendazim (CBZ), methyl thiophanate (MT), and benomyl (BN) by a multispecies microbial community attached to a fixed bed horizontal tubular reactor (HTR). This bioreactor mimics a permeable reactive biobarrier, which helps prevent the contamination of water bodies by pesticides in agricultural wastewater. Methods To rapidly quantify the microbial response to crescent loading rates of benzimidazole compounds, a gradient system was used to transiently raise the fungicide volumetric loading rates, measuring the structural and functional dynamics response of a microbial community in terms of the volumetric removal rates of the HTR entering pollutants. Results The loading rate gradient of benzimidazole compounds severely impacts the spatiotemporal taxonomic structure of the HTR biofilm-forming microbial community. Notable differences with the original structure in HTR stable conditions can be noted after three historical contingencies (CBZ, MT, and BN gradient loading rates). It was evidenced that the microbial community did not return to the composition prior to environmental disturbances; however, the functional similarity of microbial communities after steady state reestablishment was observed. Conclusions The usefulness of the method of gradual delivery of potentially toxic agents for a microbial community immobilized in a tubular biofilm reactor was shown since its functional and structural dynamics were quickly evaluated in response to fungicide composition and concentration changes. The rapid adjustment of the contaminants' removal rates indicates that even with changes in the taxonomic structure of a microbial community, its functional redundancy favors its adjustment to gradual environmental disturbances.
Collapse
Affiliation(s)
- María Luisa Alvarado-Gutiérrez
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Nora Ruiz-Ordaz
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Juvencio Galíndez-Mayer
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Fortunata Santoyo-Tepole
- Spectroscopy Instrumentation Center, National School of Biological Sciences, Lázaro Cárdenas Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Khemlal Nirmalkar
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Instituto Politécnico Nacional), México, México
- Present Address: Biodesign Center for Health Through Microbiomes, Arizona State University, Arizona, USA
| | - Everardo Curiel-Quesada
- Biochemistry Department. National School of Biological Sciences, Lázaro Cárdenas Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| |
Collapse
|
5
|
Lara AC, Kotrbová L, Keller M, Nouioui I, Neumann-Schaal M, Mast Y, Chroňáková A. Lentzea sokolovensis sp. nov., Lentzea kristufekii sp. nov. and Lentzea miocenica sp. nov., rare actinobacteria from Miocene lacustrine sediment of the Sokolov Coal Basin, Czech Republic. Int J Syst Evol Microbiol 2024; 74. [PMID: 38630118 DOI: 10.1099/ijsem.0.006335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).
Collapse
Affiliation(s)
- Ana Catalina Lara
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technická 5, 16628 Prague, Czech Republic
| | - Lucie Kotrbová
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Moritz Keller
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Yvonne Mast
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alica Chroňáková
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
6
|
Diversity and Antimicrobial Activities of Actinobacteria Isolated from Mining Soils in Midelt Region, Morocco. ScientificWorldJournal 2023; 2023:6106673. [PMID: 36733955 PMCID: PMC9889154 DOI: 10.1155/2023/6106673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant bacteria have emerged as a serious global health threat that requires, more than ever before, an urgent need for novel and more effective drugs. In this regard, the present study sheds light on the diversity and antimicrobial potential of Actinobacteria isolates in mining ecosystems. We have indeed investigated the production of bioactive molecules by the Actinobacteria isolated from abandoned mining areas in Midelt, Morocco, where average contents of lead (Pb) and cadmium (Cd) are higher than normal world levels. One hundred and forty-five Actinobacteria isolates were isolated and characterized based on morphological, chemotaxonomical, biochemical, and molecular data. Most of the 145 isolates were identified as Streptomyces. Isolates affiliated to the genera Amycolatopsis, Lentzea, Actinopolymorpha, and Pseudonocardia were also found. Antimicrobial producing potentials of Actinobacteria isolates were assessed against eight test microorganisms Gram+ and Gram- bacteria and yeast. Out of 145 isolates, 51 showed antimicrobial activities against at least one test microorganism. 31 isolates inhibited only bacteria, 7 showed activity against bacteria and Candida albicans, and 13 displayed activity against C. albicans solely. Our findings suggest that Actinobacteria isolated from natural heavy metal ecosystems may be a valuable source of novel secondary metabolites and therefore of new biotechnologically promising antimicrobial compounds.
Collapse
|