1
|
Alves ASP, Rodrigues CSD, Madeira LM. Liquid phase persulfate-based oxidation for the treatment of a toluene waste gas stream - Parametric study. CHEMOSPHERE 2025; 378:144376. [PMID: 40239478 DOI: 10.1016/j.chemosphere.2025.144376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
This study aimed to assess the degradation and mineralization of the toluene present in a gas stream by application of a liquid phase persulfate-based advanced oxidation process in a bubble column reactor. Up to the authors' knowledge, this is the first time where the oxidizing agent has been activated through the presence of transition metal ions and pH change, to treat a toluene-containing gas stream. A detailed parametric study was performed, with the objective of analyzing the effect of some of the main operating variables in the process performance, varying parameters such as catalyst concentration (from 0 to 0.27 g/L of Fe2+), oxidizing agent dosage (0.80 - 2.40 g/L of S2O82-) and initial pH (from 2.0 to 6.8). The best treatment performance was achieved for the following operating conditions: [Fe2+] = 0.20 g/L, [S2O82-] = 1.70 g/L and initial pH = 3.0, with the process being extended for 6 h before saturation of the liquid with toluene. Under these conditions, the toluene transferred from the gaseous effluent to the liquid phase, wherein it was then degraded by the radicals, reached a value of 7.8 x 10-2 mol/L, showing an improvement of 13 times when compared with toluene solubility in water; still, it was found that under the optimum acidic conditions, sulfate radicals have a higher contribution than hydroxyl radicals for the oxidative process. Finally, it was evidenced that the amount of toluene transferred almost duplicated when compared to other studies reported in the literature that applied Fenton's reaction to degrade toluene.
Collapse
Affiliation(s)
- Ana S P Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luís M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Huang H, Xie X, Xiao F, Liu B, Zhang T, Feng F, Lan B, Zhang C. A Critical Review of Deep Oxidation of Gaseous Volatile Organic Compounds via Aqueous Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18456-18473. [PMID: 39388166 DOI: 10.1021/acs.est.4c07202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Volatile organic compounds (VOCs) are considered to be the most recalcitrant gaseous pollutants due to their high toxicity, diversity, complexity, and stability. Gas-solid catalytic oxidation methods have been intensively studied for VOC treatment while being greatly hampered by energy consumption, catalyst deactivation, and byproduct formation. Recently, aqueous advanced oxidation processes (AOPs) have attracted increasing interest for the deep oxidation of VOCs at room temperature, owing to the generation of abundant reactive oxygen species (ROS). However, current reviews mainly focus on VOC degradation performance and have not clarified the specific reaction process, degradation products, and paths of VOCs in different AOPs. This study systematically reviews recent advances in the application of aqueous AOPs for gaseous VOC removal. First, the VOC gas-liquid mass transfer and chemical oxidation processes are presented. Second, the latest research progress of VOC removal by various ROS is reviewed to study their degradation performances, pathways, and mechanisms. Finally, the current challenges and future strategies are discussed from the perspectives of synergistic oxidation of VOC mixtures, accurate oxidation, and resource utilization of target VOCs via aqueous AOPs. This perspective provides the latest information and research inspiration for the future industrial application of aqueous AOPs for VOC waste gas treatment.
Collapse
Affiliation(s)
- Haibao Huang
- College of Ecology and Environment, School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
- Guangdong Provincial Engineering Research Center of Intelligent Low-Carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou 510006, China
- SCNU (NAN'AN) Green and Low-Carbon Innovation Center, Nan'an SCNU Institute of Green and Low-Carbon Research, Quanzhou 362300, China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fada Feng
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Bang Lan
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Chao Zhang
- Guangdong Provincial Engineering Research Center of Intelligent Low-Carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou 510006, China
- SCNU (NAN'AN) Green and Low-Carbon Innovation Center, Nan'an SCNU Institute of Green and Low-Carbon Research, Quanzhou 362300, China
| |
Collapse
|
3
|
Maselli G, Oliva G, Nesticò A, Belgiorno V, Naddeo V, Zarra T. Carbon capture and utilisation (CCU) solutions: Assessing environmental, economic, and social impacts using a new integrated methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174873. [PMID: 39038673 DOI: 10.1016/j.scitotenv.2024.174873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Carbon Capture and Utilisation (CCU) technologies play a significant role in climate change mitigation, as these platforms aim to capture and convert CO2 that would be otherwise emitted into the atmosphere. Effective and economically sustainable technologies are crucial to support the transition to renewable and low-carbon energy sources by 2030 and beyond. Currently, studies exploring the financial viability of CCU technologies besides the joint analyses of life-cycle costs and environmental and social impacts are still limited. In this context, the study developed and validated an innovative and integrated methodology, called Life Cycle Cost and Sustainability Assessment (LCC-SA) which allows the joint assessment of (i) project life-cycle costs, (ii) socio-cultural and environmental externalities. This tool was validated with an application to an algal photobioreactors (PBRs) and allowed to assess the economic and environmental sustainability besides identifying the main critical issues to be addressed during the transition from pilot-scale plant to industrial application. The methodology's implementation estimated benefits in two main areas: (i) environmental, including CO2 removal and avoidance through biodiesel production instead of fossil-derived diesel; (ii) socio-cultural, encompassing new patents, knowledge spillovers, human capital formation, and knowledge outputs. The analysis returned as main result that the present value of the social externalities amounts to around EUR 550,000 and the present value of the costs to approximately EUR 60,000. The Economic Net Present Value (ENPV) is EUR 487,394, which shows the significance of the extra-financial effects generated by the research project. At full-scale application, environmental benefits include capturing 187 to 1867 tons of CO2 per year and avoiding 1.7 to 16.7 tons of CO2 annually through biodiesel production instead of fossil-derived diesel.
Collapse
Affiliation(s)
- Gabriella Maselli
- Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084 Fisciano, Italy
| | - Antonio Nesticò
- Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084 Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084 Fisciano, Italy.
| | - Tiziano Zarra
- Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
4
|
Zhang L, Zhang M, Yu Q, Su S, Wang Y, Fang Y, Dong W. Optimizing Winter Air Quality in Pig-Fattening Houses: A Plasma Deodorization Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:324. [PMID: 38257419 PMCID: PMC10818906 DOI: 10.3390/s24020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
This study aimed to evaluate the effect of two circulation modes of a plasma deodorization unit on the air environment of pig-fattening houses in winter. Two pig-fattening houses were selected, one of which was installed with a plasma deodorizing device with two modes of operation, alternating internal and external circulation on a day-by-day basis. The other house did not have any form of treatment and was used as the control house. Upon installing the system, this study revealed that in the internal circulation mode, indoor temperature and humidity were sustained at elevated levels, with the NH3 and H2S concentrations decreasing by 63.87% and 100%, respectively, in comparison to the control house. Conversely, in the external circulation mode, the indoor temperature and humidity remained subdued, accompanied by a 16.43% reduction in CO2 concentration. The adept interchange between these two operational modes facilitates the regulation of indoor air quality within a secure environment. This not only effectively diminishes deleterious gases in the pig-fattening house but also achieves the remote automation of environmental monitoring and hazardous gas management; thereby, it mitigates the likelihood of diseases and minimizes breeding risks.
Collapse
Affiliation(s)
- Liping Zhang
- Agricultural Economy and Information Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.Z.); (M.Z.)
| | - Meng Zhang
- Agricultural Economy and Information Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.Z.); (M.Z.)
| | - Qianfeng Yu
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| | - Shiguang Su
- Animal Husbandry and Veterinary Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Yan Wang
- Agricultural Economy and Information Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.Z.); (M.Z.)
| | - Yu Fang
- Agricultural Economy and Information Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.Z.); (M.Z.)
| | - Wei Dong
- Agricultural Economy and Information Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (L.Z.); (M.Z.)
| |
Collapse
|
5
|
Isinkaralar K. Improving the adsorption performance of non-polar benzene vapor by using lignin-based activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108706-108719. [PMID: 37752402 DOI: 10.1007/s11356-023-30046-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Both indoor and outdoor contamination continually contain benzene vapor. It has primary concerns about long-term health risks to the living environment. Benzene is a crucial airborne pollutant in the environment due to its apparent acute toxicity, high volatility, and poor degradability. It is especially urgent to restrain benzene emissions due to the persistent concentration increase and stringent processes. Benzene adsorption is a highly efficient mechanism with low cost, low energy consumption, and a simple process. In this study, biomass-derived porous carbon materials (TCACs) were synthesized by pyrolysis activation combined with H3PO4, HNO3, and HCl. TCAC44 has the best activation conclusion, showing that surface area and pore volume were 1107 m2/g and 0.58 cm3/g treated with H3PO4 and so was chosen for subsequent benzene adsorption/desorption tests. The adsorption capacities of benzene for TCAC44 were increased from 58 mg/g for 35 °C + 95% RH to 121 mg/g for 25 °C + 15% RH and presented a higher adsorption capacity of benzene than TCAC101 and TCAC133. Otherwise, well recyclability of TCAC44 was revealed as the benzene adsorption capacity reductions were 22.49% after five adsorption-desorption cycles. Furthermore, the present study established the property-application relationships to promote and encourage future research on the newly synthesized innovative TCAC44 for benzene removal.
Collapse
Affiliation(s)
- Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
6
|
Oliva G, Pahunang RR, Vigliotta G, Zarra T, Ballesteros FC, Mariniello A, Buonerba A, Belgiorno V, Naddeo V. Advanced treatment of toluene emissions with a cutting-edge algal bacterial photo-bioreactor: Performance assessment in a circular economy perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163005. [PMID: 36965731 DOI: 10.1016/j.scitotenv.2023.163005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/13/2023]
Abstract
A novel approach for the treatment of VOCs (by using toluene used as a model compound) and the simultaneous conversion of carbon dioxide into valuable biomass has been investigated by using a combination of an activated sludge moving bed bioreactor (MBBR) and an algal photo-bioreactor (PBR). The first unit (MBBR, R1) promoted toluene removal up to 99.9 % for inlet load (IL) of 119.91 g m-3 d-1. The CO2 resulting from the degradation of toluene was then fixed in PBR (R2), with a fixation rate up to 95.8 %. The CO2 uptake was promoted by algae, with average production of algal biomass in Stage VI of 1.3 g L-1 d-1. In the contest of the circular economy, alternative sources of nutrients have been assessed, using synthetic urban wastewater (UWW) and dairy wastewater (DWW) for liquid renewal. The produced biomass with DWW showed a high lipid content, with a maximum productivity of 450.25 mg of lipids L-1 d-1. The solution proposed may be thus regarded as a sustainable and profitable strategy for VOCs treatment in a circular economy perspective.
Collapse
Affiliation(s)
- Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rekich R Pahunang
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines; Department of Environmental Engineering, Western Mindanao State University, Normal Rd., Zamboanga, 7000, Zamboanga del Sur, Philippines
| | - Giovanni Vigliotta
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Florencio C Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, Philippines
| | - Aniello Mariniello
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
7
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume. Processes (Basel) 2023. [DOI: 10.3390/pr11030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Volatile organic compounds (VOCs) in cooking oil fumes need to be efficiently removed due to the significant damage they cause to the environment and human health. This review discusses the emission characteristics, which are influenced by different cooking temperatures, cooking oils, and cuisines. Then, various cooking oil fume purification methods are mainly classified into physical capture, chemical decomposition, and combination methods. VOCs removal rate, system operability, secondary pollution, application area, and cost are compared. The catalytic combustion method was found to have the advantages of high VOC removal efficiency, environmental protection, and low cost. Therefore, the last part of this review focuses on the research progress of the catalytic combustion method and summarizes its mechanisms and catalysts. The Marse-van Krevelen (MVK), Langmuir-Hinshelwood (L-H), and Eley-Rideal (E-R) mechanisms are analyzed. Noble metal and non-noble metal catalysts are commonly used. The former showed excellent activity at low temperatures due to its strong adsorption and electron transfer abilities, but the high price limits its application. The transition metals primarily comprise the latter, including single metal and composite metal catalysts. Compared to single metal catalysts, the interaction between metals in composite metal catalysts can further enhance the catalytic performance.
Collapse
|