1
|
Ataee-Najari AR, Rasooll MM, Zarei M, Zolfigol MA, Ghorbani-Choghamarani A, Hosseinifard M. Catalytic application of a bimetallic-organic framework with phosphorus acid groups in the preparation of pyrido[2,3- d]pyrimidines via cooperative vinylogous anomeric-based oxidation. RSC Adv 2025; 15:10150-10163. [PMID: 40176821 PMCID: PMC11963236 DOI: 10.1039/d4ra08430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
In this work, we prepared a bimetallic-organic framework (bimetallic-MOF) using Fe/Zr as metals. Subsequently, the bimetallic-MOF was functionalized with phosphorus acid groups to serve as a heterogeneous catalyst. The catalyst was characterized using various techniques, such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD) and Brunauer-Emmett-Teller (BET) surface area analysis. Due to its suitable surface area and pore size, this heterogeneous catalyst was used for the preparation of pyrido[2,3-d]pyrimidine derivatives, achieving good yields (71-86%). Easy separation of the catalyst from the reaction medium, high yields, short reaction times and catalyst reusability are some of the characteristic advantages of multicomponent reactions.
Collapse
Affiliation(s)
- Ali Reza Ataee-Najari
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom Qom 37185-359 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | | |
Collapse
|
2
|
Loganathan V, Ahamed A, Akbar I, Gerbu DG, Alodaini HA, Manilal A. Cu(II)-Catalyzed Synthesis of Pyrazolo[3,4- b]pyridine Derivatives and Their Potential Antibacterial and Cytotoxic Activities with Molecular Docking, DFT Calculation, and SwissADME Analysis. ACS OMEGA 2025; 10:1643-1656. [PMID: 39829459 PMCID: PMC11740132 DOI: 10.1021/acsomega.4c09524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
The present work focuses on a newly synthesized pyrazolo[3,4-b]pyridine prepared by formal [3 + 3] cycloaddition using copper(II) acetylacetonate as the catalyst; efficient and effective mild reactions with high yields were obtained using this method. The synthesized compounds were identified by FT-IR, 1H and 13C NMR, and mass spectra (m/z) analyses. The compounds (2a-l) were screened for several in vitro and in silico activities. Compound 2g showed impressive inhibitory activities against methicillin-resistant Staphylococcus aureus (MIC: 2 μg/mL), vancomycin-resistant Enterococci (MIC: 8 μg/mL), piperacillin-resistant Pseudomonas aeruginosa, and extended-spectrum beta-lactamase-producing Escherichia coli (MIC: 4 μg/mL) compared to the positive control, ciprofloxacin. Compared to standard doxorubicin, compound 2g had a higher efficacy against the HepG2 cancer cell line, with a GI50 value of 0.01 μM. The highly active compound 2g was investigated for in silico molecular docking, density functional theory calculations (DFT), and SwissADME physicochemical properties. Compound 2g had a higher docking score compared with standard (-8.5 vs -7.3 and -10.0 vs -8.4 kcal/mol). In compound 2g, the energy gap was 0.17 eV, as determined by using DFT calculations. The physicochemical properties of all compounds were investigated by using SwissADME. Overall, compound 2g exhibited promising antibacterial and cytotoxic activities.
Collapse
Affiliation(s)
- Velmurugan Loganathan
- Research
Department of Chemistry, Nehru Memorial
College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli
District, Tamil Nadu 621007, South India
| | - Anis Ahamed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Idhayadhulla Akbar
- Research
Department of Chemistry, Nehru Memorial
College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli
District, Tamil Nadu 621007, South India
| | - Desta Galcha Gerbu
- School
of Medicine, College of Medicine and Health Sciences, Arba Minch University, P.O. Box No.
21, Arba Minch 21, Ethiopia
| | - Hissah Abdulrahman Alodaini
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aseer Manilal
- Department
of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, P.O. Box No. 21, Arba Minch 21, Ethiopia
| |
Collapse
|
3
|
Mirheidari M, Abbas AK, Safaei-Ghomi J. Supported phenylalanine on core-shell mesoporous microsphere as a catalyst for the synthesis of triazolo[1,2-a] indazole-triones and spiro triazolo[1,2-a] indazole-tetraones. Sci Rep 2024; 14:26500. [PMID: 39489767 PMCID: PMC11532543 DOI: 10.1038/s41598-024-78018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, mesoporous silica materials have gained attention due to their unique properties, such as high surface area, pore volume, size, and chemical stability. These characteristics make them effective in various fields, particularly efficient supports in heterogeneous catalytic reactions. The present study developed a novel type of core-shell mesoporous microsphere material by anchoring phenylalanine on a core-shell SiO2@NiO@MS support. The catalyst support (SiO2@NiO@MS) was synthesized through homogeneous precipitation and sol-gel methods, with NiO encapsulated within the porous silica. The catalyst was characterized using various techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), Elemental mapping analysis, N2 adsorption-desorption, Transmission electron microscopy (TEM), Vibrating sample magnetometer (VSM), and Thermogravimetric analysis (TGA). It was then employed for the synthesis of triazolo[1,2-a]indazole-trione and spiro triazolo[1,2-a]indazole-tetraones compounds from 4-phenyl urazole, dimedone, and aromatic aldehydes or isatin derivatives. This synthetic approach offers multiple advantages, including high yields, faster reaction times, low catalyst requirements, and environmentally sustainable conditions.
Collapse
Affiliation(s)
- Mahnaz Mirheidari
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Ali Kareem Abbas
- College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
4
|
Nayak KH, Jijin RK, Sreelekha MK, Babu BP. Copper-catalyzed aerobic annulation of hydrazones with dienones: an efficient route to pyrazole-linked hybrid molecules. Org Biomol Chem 2024; 22:6631-6637. [PMID: 39104204 DOI: 10.1039/d4ob00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A copper-catalyzed aerobic [3 + 2] annulation reaction to access various pyrazole-bound chalcones starting from readily available and cost-effective hydrazones and dienones is reported. These pyrazole-bound chalcones were further utilized effectively to prepare a series of pyrazole-linked hybrid molecules, such as pyrazole-pyrazoline, pyrazole-aziridine, and pyrazole-pyridine hybrids by efficient simple transformations. Synthetically challenging hybrid molecules were obtained in a simple, two-step process with high atom economy under aerobic copper catalysis.
Collapse
Affiliation(s)
- Kalinga H Nayak
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| | - Robert K Jijin
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| | - Mariswamy K Sreelekha
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| | - Beneesh P Babu
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| |
Collapse
|
5
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
6
|
Navazeni M, Zolfigol MA, Ahmadi H, Sepehrmansourie H, Khazaei A, Hosseinifard M. Design, synthesis and application of a magnetic H-bond catalyst in the preparation of new nicotinonitriles via cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:16607-16616. [PMID: 38779389 PMCID: PMC11110150 DOI: 10.1039/d4ra01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Herein, we designed and synthesized a new H-bond magnetic catalyst with 2-tosyl-N-(3-(triethoxysilyl)propyl)hydrazine-1-carboxamide as a sensitive H-bond donor/acceptor. We created an organic structure with a urea moiety on the magnetic nanoparticles, which can function as a hydrogen bond catalyst. Hydrogen bond catalysts serve as multi-donor/-acceptor sites. Additionally, we utilized magnetic nanoparticles in the production of the target catalyst, giving it the ability to be recycled and easily separated from the reaction medium with an external magnet. We evaluated the catalytic application of Fe3O4@SiO2@tosyl-carboxamide as a new magnetic H-bond catalyst in the synthesis of new nicotinonitrile compounds through a multicomponent reaction under solvent-free and green conditions with high yields (50-73%). We confirmed the structure of Fe3O4@SiO2@tosyl-carboxamide using various techniques. In addition, the structures of the desired nicotinonitriles were confirmed using melting point, 1H-NMR, 13C-NMR and HR-mass spectrometry analysis. The final step of the reaction mechanism was preceded via cooperative vinylogous anomeric-based oxidation (CVABO).
Collapse
Affiliation(s)
- Mahdiyeh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hossein Ahmadi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P. O. Box 31787-316 Karaj 401602 Iran
| |
Collapse
|
7
|
Tavakoli E, Sepehrmansourie H, Zolfigol MA, Khazaei A, Mohammadzadeh A, Ghytasranjbar E, As'Habi MA. Synthesis and Application of Task-Specific Bimetal-Organic Frameworks in the Synthesis of Biological Active Spiro-Oxindoles. Inorg Chem 2024; 63:5805-5820. [PMID: 38511836 DOI: 10.1021/acs.inorgchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The use of click chemistry as a smart and suitable method for the development of new heterogeneous catalysts is based on metal-organic frameworks as well as the production of organic compounds. The development of the click chemistry method can provide a new strategy to achieve superior properties of MOFs. Here, the two metals Co and Fe are used to create a bimetallic-organic framework. In the following, the click chemistry and postmodification method are well organized and an acidic heterogeneous porous catalyst is developed. This prepared catalyst was used as a highly efficient catalyst for the preparation of new spiro-oxindoles obtained through click chemistry with good to excellent yields (80-94%). This presented catalytic system can compete with the best reported catalytic systems. The findings showed that the presence of Co and Fe metals in the MOF, and the presence of the triazole ring on the catalyst, can increase the catalytic efficiencies. This study offers novel insights into the architecture of Metal-Organic Frameworks (MOFs), click chemistry, and biologically active compounds. Additionally, the research explores the antibacterial properties of the synthesized spiro-oxindoles and catalysts. The findings reveal significant antibacterial activities of the synthesized compounds against S. aureus, MRSA, and E. coli bacteria.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Elaheh Ghytasranjbar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
8
|
Kalhor S, Sepehrmansourie H, Zarei M, Zolfigol MA, Shi H. Application of Functionalized Zn-Based Metal-Organic Frameworks (Zn-MOFs) with CuO in Heterocycle Synthesis via Azide-Alkyne Cycloaddition. Inorg Chem 2024; 63:4898-4914. [PMID: 38296524 DOI: 10.1021/acs.inorgchem.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The main goal of this article is to discuss the expansion of click chemistry. A new catalyst composed of CuO nanoparticles embedded in Zn-MOF with the ligand 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (H3L) is presented. The incorporation of CuO nanoparticles into the Zn-MOF structure led to desirable morphology and catalytic properties. The designed catalyst was evaluated for its catalytic role in the multicomponent reaction and copper-catalyzed azide-alkyne cycloaddition (CuAAC) for preparation of triazole rings with 80-91% yield. The catalyst demonstrated an appealing architecture and exhibited robustness, high efficiency, and environmental friendliness. Characterization of the catalyst was performed using various techniques, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopes (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, and X-ray diffraction (XRD). The results suggest that this novel catalyst has the potential to be a valuable tool in the development of new synthetic approaches for a wide range of applications.
Collapse
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37161-46611, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Babaee S, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M. Synthesis of picolinates via a cooperative vinylogous anomeric-based oxidation using UiO-66(Zr)-N(CH 2PO 3H 2) 2 as a catalyst. RSC Adv 2023; 13:22503-22511. [PMID: 37497088 PMCID: PMC10368083 DOI: 10.1039/d3ra03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The anomeric effect highlights the significant influence of the functional group and reaction conditions on oxidation-reduction. This article successfully investigates the anomeric effect in the synthesis of picolinate and picolinic acid derivatives through a multi-component reaction involving 2-oxopropanoic acid or ethyl 2-oxopropanoate, ammonium acetate, malononitrile, and various aldehydes. To facilitate this process, we employed UiO-66(Zr)-N(CH2PO3H2)2 as a novel nanoporous heterogeneous catalyst. The inclusion of phosphorous acid tags on the UiO-66(Zr)-N(CH2PO3H2)2 offers the potential for synthesizing picolinates at ambient temperature.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom Qom 37185-359 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P.O. Box 31787-316 Karaj Iran
| |
Collapse
|
10
|
Mohammadi Rasooll M, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M, Gu Y. Catalytic Application of Functionalized Bimetallic-Organic Frameworks with Phosphorous Acid Tags in the Synthesis of Pyrazolo[4,3- e]pyridines. ACS OMEGA 2023; 8:25303-25315. [PMID: 37483221 PMCID: PMC10357449 DOI: 10.1021/acsomega.3c02580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Combining two different metals for the synthesis of a metal-organic framework (MOF) is a smart strategy for the architecture of new porous materials. Herein, a bimetal-organic framework (bimetal-MOFs) based on Fe and Co metals was synthesized. Then, phosphorous acid tags were decorated on bimetal-MOFs via a postmodification method as a new porous acidic functionalized catalyst. This catalyst was used for the synthesis of pyrazolo[4,3-e]pyridine derivatives as suitable drug candidates. The present study provides new insights into the architecture of novel porous heterogeneous catalysts based on a bimetal-organic framework (bimetal-MOFs). The type of final structures of catalyst and pyrazolo[4,3-e]pyridine derivatives were determined using different techniques such as fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), SEM-elemental mapping, N2 adsorption-desorption isotherm, Barrett-Joyner-Halenda (BJH), thermogravimetry/differential thermal analysis (TG/DTA), 1H NMR, and 13C NMR.
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 401602, Iran
| | - Yanlong Gu
- School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
11
|
Olyaei A, Sadeghpour M. Chemistry of 3-cyanoacetyl indoles: synthesis, reactions and applications: a recent update. RSC Adv 2023; 13:21710-21745. [PMID: 37476036 PMCID: PMC10354596 DOI: 10.1039/d3ra04385a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Indole is a significant nitrogen-based heterocycle with particular importance in the synthesis of heterocyclic scaffolds. Indole based compounds have been recently attracting much attention due to their biological and pharmaceutical activities. 3-Substituted indoles such as cyanoacetyl indoles (CAIs) are nitrogen-heterocyclic compounds which are easily obtained from the reaction of indoles and cyanoacetic acid. They are versatile starting materials utilized for the construction of a wide variety of molecules containing indole moieties in organic synthesis. In this study, we provide an overview on the synthesis of 3-cyanoacetyl indoles (CAIs) and their recent applications in the multi-component reactions for the synthesis of various heterocyclic compounds such as pyranes, pyridines, dihydropyridines, pyrimidines, tetrahydropyrimidines, pyrazoles, pyrazolopyridines, pyrazolopyrimidines, pyridopyrimidines, tetrazolopyrimidines, triazolopyrimidines, furans, dihydrofurans, coumarins, pyrimido naphthyridines, chromenes, thiazoles, pyrimidoindazoles, pyrazoloquinolines, isoxazolopyridines, and carbazoles and their biological activities during the period of 2013 to 2022.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Payame Noor University (PNU) PO BOX 19395-4697 Tehran Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry, Qazvin Branch, Islamic Azad University Qazvin Iran +0098-28-33365275
| |
Collapse
|
12
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, As'Habi MA. Application of Zr-MOFs based copper complex in synthesis of pyrazolo[3, 4-b]pyridine-5-carbonitriles via anomeric-based oxidation. Sci Rep 2023; 13:9388. [PMID: 37296128 PMCID: PMC10256735 DOI: 10.1038/s41598-023-34172-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
In this research article, Zr-MOFs based copper complex as a novel heterogeneous and porous catalyst was designed and prepared. The structure of catalyst has verified by various techniques such as FT-IR, XRD, SEM, N2 adsorption-desorption isotherms (BET), EDS, SEM-elemental mapping, TG and DTG analysis. UiO-66-NH2/TCT/2-amino-Py@Cu(OAc)2 was used as an efficient catalyst in the synthesis of pyrazolo[3,4-b]pyridine-5-carbonitrile derivatives. The aromatization of titled molecules is performed via a cooperative vinylogous anomeric-based oxidation both under air and inert atmospheres. The unique properties of the presented method are short reaction time, high yield, reusability of catalyst, synthesis of desired product under mild and green condition.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran.
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran.
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, 1983963113, Iran
| |
Collapse
|
13
|
Sepehrmansourie H, Mohammadi Rasooll M, Zarei M, Zolfigol MA, Gu Y. Application of Metal-Organic Frameworks with Sulfonic Acid Tags in the Synthesis of Pyrazolo[3,4- b]pyridines via a Cooperative Vinylogous Anomeric-Based Oxidation. Inorg Chem 2023. [PMID: 37262344 DOI: 10.1021/acs.inorgchem.3c01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein, we report the design and synthesis of Co-MOF-71/imidazole/SO3H as a novel porous catalyst with sulfonic acid tags. The structure and morphology of the catalyst were investigated using various techniques such as Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscopy (SEM), SEM elemental mapping, energy-dispersive X-ray spectroscopy, Barret-Joyner-Halenda, and N2 adsorption-desorption isotherms. Co-MOF-71/imidazole/SO3H was studied in the preparation of novel pyrazolo[3,4-b]pyridines under mild and green conditions via a cooperative vinylogous anomeric-based oxidation. A wide range of mono and bis pyrazolo[3,4-b]pyridines were synthesized with good to excellent yields (65-82%). A hot filtration test for the heterogeneous nature of the catalyst indicated the high stability of the prepared catalyst. The recyclability of Co-MOF-71/imidazole/SO3H is another advantage of the present methodology. The structures of the final products were confirmed using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185359, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
14
|
Danishyar B, Sepehrmansourie H, Ahmadi H, Zarei M, Zolfigol MA, Hosseinifard M. Application of Nanomagnetic Metal-Organic Frameworks in the Green Synthesis of Nicotinonitriles via Cooperative Vinylogous Anomeric-Based Oxidation. ACS OMEGA 2023; 8:18479-18490. [PMID: 37273641 PMCID: PMC10233831 DOI: 10.1021/acsomega.2c06651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023]
Abstract
In the current study, we synthesized a new nanomagnetic metal-organic framework Fe3O4@MIL-53(Al)-N(CH2PO3)2 and characterized it using various techniques. This nanomagnetic metal-organic framework was used for the synthesis of a wide range of nicotinonitrile derivatives as suitable drug candidates by a four-component reaction of 3-oxo-3-phenylpropanenitrile or 3-(4-chlorophenyl)-3-oxopropanenitrile, ammonium acetate (NH4OAc), acetophenone derivatives, and various aldehydes including those bearing electron-donating, electron-withdrawing, and halogen groups, which afforded desired products (27 samples) via a cooperative vinylogous anomeric-based oxidation (CVABO) mechanism under solvent-free conditions in excellent yields (68-90%) and short reaction times (40-60 min). Increasing the surface-to-volume ratio, easy separation of the catalyst using an external magnet, and high chemical and temperature stability are the advantages of the described nanomagnetic metal-organic frameworks.
Collapse
Affiliation(s)
- Bashirullah Danishyar
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Hossein Ahmadi
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 31648-19712, Iran
| |
Collapse
|
15
|
Islam MB, Islam MI, Nath N, Emran TB, Rahman MR, Sharma R, Matin MM. Recent Advances in Pyridine Scaffold: Focus on Chemistry, Synthesis, and Antibacterial Activities. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9967591. [PMID: 37250749 PMCID: PMC10212683 DOI: 10.1155/2023/9967591] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant (MDR) pathogens have created a fatal problem for human health and antimicrobial treatment. Among the currently available antibiotics, many are inactive against MDR pathogens. In this context, heterocyclic compounds/drugs play a vital role. Thus, it is very much essential to explore new research to combat the issue. Of the available nitrogen-bearing heterocyclic compounds/drugs, pyridine derivatives are of special interest due to their solubility. Encouragingly, some of the newly synthesized pyridine compounds/drugs are found to inhibit multidrug-resistant S. aureus (MRSA). Pyridine scaffold bearing poor basicity generally improves water solubility in pharmaceutically potential molecules and has led to the discovery of numerous broad-spectrum therapeutic agents. Keeping these in mind, we have reviewed the chemistry, recent synthetic techniques, and bacterial preventative activity of pyridine derivatives since 2015. This will facilitate the development of pyridine-based novel antibiotic/drug design in the near future as a versatile scaffold with limited side effects for the next-generation therapeutics.
Collapse
Affiliation(s)
- Md. Badrul Islam
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| | - Md. Inshaful Islam
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, Kota Samarahan 94300, Malaysia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Hathazari, Chittagong 4331, Bangladesh
| |
Collapse
|
16
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, As'Habi MA. Application of Ti-MOF-UR as a new porous catalyst for the preparation of pyrazolo[3,4-b]quinoline and pyrazolo[4,3-e]pyridines. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Dutta M, Bora J, Chetia B. Overview on recent advances of magnetic metal-organic framework (MMOF) composites in removal of heavy metals from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13867-13908. [PMID: 36547836 DOI: 10.1007/s11356-022-24692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Developing a novel, simple, and cost-effective analytical technique with high enrichment capacity and selectivity is crucial for environmental monitoring and remediation. Metal-organic frameworks (MOFs) are porous coordination polymers that are self-assembly synthesized from organic linkers and inorganic metal ions/metal clusters. Magnetic metal-organic framework (MMOF) composites are promising candidate among the new-generation sorbent materials available for magnetic solid-phase extraction (MSPE) of environmental contaminants due to their superparamagnetism properties, high crystallinity, permanent porosity, ultrahigh specific surface area, adaptable pore shape/sizes, tunable functionality, designable framework topology, rapid and ultrahigh adsorption capacity, and reusability. In this review, we focus on recent scientific progress in the removal of heavy metal ions present in contaminated aquatic system by using MMOF composites. Different types of MMOFs, their synthetic approaches, and various properties that are harnessed for removal of heavy metal ions from contaminated water are discussed briefly. Adsorption mechanisms involved, adsorption capacity, and regeneration of the MMOF sorbents as well as recovery of heavy metal ions adsorbed that are reported in the last ten years have been discussed in this review. Moreover, particular prospects, challenges, and opportunities in future development of MMOFs towards their greener synthetic approaches for their practical industrial applications have critically been considered in this review.
Collapse
Affiliation(s)
- Mayuri Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Jyotismita Bora
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
18
|
Sepehrmansourie H, Kalhor S, Zarei M, Zolfigol MA, Hosseinifard M. A convenient catalytic method for preparation of new tetrahydropyrido[2,3- d]pyrimidines via a cooperative vinylogous anomeric based oxidation. RSC Adv 2022; 12:34282-34292. [PMID: 36545580 PMCID: PMC9709663 DOI: 10.1039/d2ra05655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel functionalized metal-organic frameworks MIL-125(Ti)-N(CH2PO3H2)2 was designed and synthesized via post-modification methodology. Then, MIL-125(Ti)-N(CH2PO3H2)2 as a mesoporous catalyst was applied for the synthesis of a wide range of novel tetrahydropyrido[2,3-d]pyrimidines as bioactive candidate compounds by one-pot condensation reaction of 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile, 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione and aromatic aldehydes at 100 °C under solvent-free condition. Interestingly, the preparation of tetrahydropyrido[2,3-d]pyrimidine was achieved via vinylogous anomeric based oxidation mechanism with a high yield and short reaction time.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of QomQom37185-359Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research CenterP.O. Box 31787-316KarajIran
| |
Collapse
|
19
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Gu Y. A New Approach for the Synthesis of Bis(3-Indolyl)Pyridines via a Cooperative Vinylogous Anomeric Based Oxidation Using Ammonium Acetate as a Dual Reagent-Catalyst Role under Mild and Green Condition. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2128830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Kalhor S, Shi H. Catalytic chemo and homoselective ipso-nitration under mild condition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, Hosseinifard M. Applications of novel composite UiO-66-NH 2/Melamine with phosphorous acid tags as a porous and efficient catalyst for the preparation of novel spiro-oxindoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03340b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new approach for the incorporation of phosphorous acid tags into a metal organic framework based on UiO-66-NH2/Melamine was introduced. This new catalyst was applied to the preparation of novel spiro-oxindoles under mild and green conditions.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department of Semiconductors, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
| |
Collapse
|