1
|
Tu J, Wan W, Tang B, Jiang F, Wen J, Luo Q, Ye J. Dissecting the pathogenic effects of smoking in blood DNA methylation on allergic diseases. World Allergy Organ J 2024; 17:100995. [PMID: 39640897 PMCID: PMC11617736 DOI: 10.1016/j.waojou.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Allergic diseases, such as asthma and allergic rhinitis, present significant health challenges globally. Elucidating the genetic and epigenetic foundations is crucial for developing effective interventions. Methods We performed two-sample Mendelian Randomization (MR) analyses to investigate the associations between smoking behaviors and various allergic diseases, leveraging data from the FinnGen database. Additionally, we examined the relationships of DNA methylation (CpG sites) with allergic diseases, employing mQTLs as epigenetic proxies. Furthermore, we conducted reverse MR analyses on CpG sites that exhibited cross-allergic disease effects. Results In our genomic MR analysis, smoking behaviors such as smoking initiation and the number of cigarettes smoked per day were identified to be causally associated with an increased risk of asthma. Additionally, there was suggestive evidence linking smoking initiation to atopic contact dermatitis. Our epigenetic MR analysis found that methylation changes at 46 CpG sites, assessed via mQTLs, were significantly associated with asthma risk. Notably, cg17272563 (PRRT1), cg03689048 (BAT3), cg20069688 (STK19), and cg20513976 (LIME1) were identified with cross-allergic effects. Crucially, reverse MR analysis substantiated these associations. Conclusions Our study has highlighted the associations between smoking behaviors and allergic diseases in the genetic and epigenetic landscape, notably asthma. We identified several DNA methylation-related CpG sites, such as cg03689048 (BAT3), cg17272563 (PRRT1), and cg20069688 (STK19), which demonstrate cross-allergic potential and reverse causal relationships.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Wei Wan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fan Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jinyang Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Allergy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Foo ACY, Edin ML, Lin WC, Lih FB, Gabel SA, Uddin MN, Fessler MB, Zeldin DC, Mueller GA. Production and Release of Proinflammatory Mediators by the Cockroach Allergen Bla g 1 via a Shared Membrane-Destabilization Mechanism. Biochemistry 2024; 63:1730-1737. [PMID: 38915291 DOI: 10.1021/acs.biochem.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1β). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Dept. of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Wan-Chi Lin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Fred B Lih
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Mohammad N Uddin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
3
|
Simoncelli F, Fagotti A, Di Rosa I, Lucentini L, Brustenga L, Di Cara G. Qualitative Immunodetection of Hsp70 in Nasal Samples of Children With Allergic Rhinitis. Pediatr Dev Pathol 2024; 27:102-104. [PMID: 38098245 DOI: 10.1177/10935266231212591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Affiliation(s)
- Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna Fagotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Livia Lucentini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Leonardo Brustenga
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Pye ES, Wallace SE, Marangoni DG, Foo ACY. Albumin Proteins as Delivery Vehicles for PFAS Contaminants into Respiratory Membranes. ACS OMEGA 2023; 8:44036-44043. [PMID: 38027323 PMCID: PMC10666230 DOI: 10.1021/acsomega.3c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a family of chemicals that have been used in a wide range of commercial products. While their use is declining, the prevalence of PFAS, combined with their chemical longevity, ensures that detectable levels will remain in the environment for years to come. As such, there is a pressing need to understand how PFAS contaminants interact with other elements of the human exposome and the consequences of these interactions for human health. Using serum albumin as a model system, we show that proteins can bind PFAS contaminants and facilitate their incorporation into model pulmonary surfactant systems and lipid bilayers. Protein-mediated PFAS delivery significantly altered the structure and function of both model membrane systems, potentially contributing to respiratory dysfunction and airway diseases in vivo. These results provide valuable insights into the synergistic interaction between PFAS contaminants and other elements of the human exposome and their potential consequences for human health.
Collapse
Affiliation(s)
- Evan S. Pye
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Shannon E. Wallace
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - D. Gerrard Marangoni
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Alexander C. Y. Foo
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| |
Collapse
|